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Abstract

Human-Robot Interaction research should consider
possible applications to real-world problems, and
thus take into account the unanticipated factors that
might hinder the interaction. In a task of robot-to-
human handover, a scenario where human move-
ments can be unexpectedly perturbed or interrupted
is considered. An approach derived from Dynamic
Movement Primitives is proposed for online tra-
jectory generation of a robotic arm. Two Ma-
chine Learning modules are presented to endow the
robot controller with adaptive capabilities. First, a
Bayesian Optimization-based preferential learning
algorithm is used to tune the robot behavior on hu-
man feedback. Then, a short-term predictor is em-
ployed to facilitate anticipatory control. By predict-
ing human-hand displacement and anticipating the
trajectory of the handover, we demonstrate that the
proposed method can be robust and safe for online
trajectory generation in handover tasks.

1 Introduction
While there is a growing interest in Human-Robot Interac-
tion (HRI) research, practical implementations, especially for
industrial use, remain limited. Most commonly, in indus-
try, robots are contained in isolated workspaces, separated
from human workers, due to safety and efficiency constraints.
However, to obtain human-like collaboration capabilities, the
development of robots that occupy shared workspaces and
participate in joint tasks is compulsory. Although there is
extensive research on HRI, laboratory conditions tend to be
more structured, to focus on certain aspects of the interaction,
as opposed to practical interactions which may include unex-
pected events. Thus, it might be necessary to move towards
paradigms able to work in less structured settings and to con-
sider scenarios that more closely match practical applications
to develop pragmatic HRI implementations.

A typical problem in HRI is executing a handover: pass-
ing an object between two agents. As this simple action can
be considered fundamental for most conceivable physical col-
laborations, it has received broad attention from the research
community. However, a handover requires at one time many

different problems: partner and objects recognition, interpre-
tation of partners intention, grasp selection and control, tra-
jectory planning, and more. Thus, the reliable execution of
a handover with the level of smoothness akin to humans still
represents an open problem [Ortenzi et al., 2021].

To address some of the aforementioned issues we turned to
a combination of dynamical systems and Machine Learning
(ML). Dynamical systems present a solid baseline for online
trajectory generation. In this way, the trajectory is not com-
pletely planned beforehand, but it is generated in real-time
as the robot executes the motion. This allows for reaction to
what happens in the environment on the fly, without the need
to re-plan the motion. On the other hand, ML is employed
to address human-related aspects of interaction, which would
otherwise be difficult to model.

In this work, we focus on the problem of generating a suit-
able trajectory for the robot to pass the object, while being
able to react to unpredictable perturbations that may happen
and adapt to the user’s preference. The methods proposed are
focused on reacting given the permanence of the intention to
perform the handover from the robot. An example of such
handover is illustrated in Figure 1. As an example, consider a
high-level controller that, interpreting the action of the human
partner, decides when to initiate or to stop the execution of the
handover. Such controller could fail or be too slow to recog-
nize when the handover should be interrupted or adjusted, or
can start the handover at the wrong time (e.g. too soon). The
methods presented here can be integrated with such a high-
level controller to lower its performance requirements, while
still keeping a smooth and safe behaviour.

2 Basic framework
2.1 Trajectory generation with dynamical systems
The methods applied in this work are a generalization of Dy-
namic Movement Primitives (DMP), introduced by [Ijspeert
et al., 2002]. The trajectory is considered as generated by
the evolution of a dynamical system. As an example, we
can consider a one-dimensional trajectory x(t) generated by
a second-order dynamical system similar to a mass-spring-
damper system:

τ2ẍ = αx(βx(g − x)− τ ẋ) + fext (1)

with fext an external forcing term. If we consider that fext
vanishes over time (typically obtained by introducing an ad-



Figure 1: Example of robust handover. The robot starts the execu-
tion in the first frame. Then, human performs a secondary task of
taking an object close to handover location and placing it to the side.
Finally, the human reaches for the handover object.

ditional variable, called the phase of the system), for positive
values of αx and βx, the state will smoothly converge to the
goal g. The forcing term can also be learned, to replicate a de-
sired trajectory before convergence to the goal. Furthermore,
additional terms can be added to modify the behaviour of the
system depending on external cues. In this work we consider
a more generalized version of the system above:

ẏ = f(y,θ,u) (2)

with a state y = [x, ẋ, ...]T , external input u, and θ the vector
of parameters of the system.

2.2 Preferential learning
Due to the inherent flaws in human evaluations, learning
from human input is challenging. Absolute human feed-
back is usually noisy and unreliable, suffering from drift
(scale shifting over time) and anchoring (early interactions
are deemed as more important) [Chu e Ghahramani, 2005;
Brochu et al., 2010]. Furthermore, internal scales between in-
dividuals could be vastly different. To overcome these issues,
relative feedback can be employed. Thus, human partners can
be asked how did the most recent interaction compare to the
previous one. Given the preferences, the probit model can
be applied, that fits relative, binary, feedback to utility func-
tion u[Chu e Ghahramani, 2005; Brochu et al., 2010]. Let’s
consider a data set of ranked pairs:

D = {ri ≻ ci; i = 1, ...,m} (3)

where ri, ci ∈ Θ are points in the parameter space. After col-
lecting the data, a zero-mean non-parametric Gaussian Pro-
cess (GP) prior can be fitted as:

P(u) = |2πK| 12 exp
(
1

2
uTK−1u

)
(4)

where u = |u(θ1), u(θ2), ..., u(θn)|T and K is the n× n co-
variance matrix (n is the number of instances) [Chu e Ghahra-
mani, 2005]. To estimate the posterior distribution of u,
model is fit:

P(u|D) ∝ P(u)

m∏
i=1

P(ri > ci|u(ri), u(ci)) (5)

This problem can be viewed as an optimization of an
expensive-to-estimate black-box function, and Bayesian Op-
timization (BO) can be effectively employed [Brochu et al.,
2010].

3 Adapting to user preferences with
preference learning

The first method conceived to react to perturbations during a
handover was based on the estimated distance between the
partner’s hand and the final handover position (where the
hands should meet). Two coupling terms were added to the
dynamical system, that slowed down the evolution of the tra-
jectory depending on the distance and its time derivative, with
a total of 4 tunable parameters. The idea behind the proposed
coupling terms is that the dynamics of the distance from the
final handover position can be useful to discriminate the in-
tention to hand over an object. On the other side, the terms
can slow down the robot if the human hand is not approaching
for the handover. However, there was no easy or intuitive cor-
relation between the value of these parameters and the robot’s
behaviour.

The task devised to test the controller was composed to
represent a possible worst-case scenario: it required the par-
ticipant to reach for a position close to the (known) final han-
dover position, before going for the actual handover after the
execution of a different sub-task. As during all these sub-
tasks the robot was active in handover mode (simulating a
high-level controller that activated the handover too soon), if
not tuned correctly the controller could be tricked by the first
motion to perform the handover at full speed. An example of
the task is shown in Figure 1.

In this framework, preference-based Bayesian optimiza-
tion has been applied to tune the behaviour of the controller,
given by its four parameters, directly by the human user’s
feedback in a perturbed handover scenario. While the prefer-
ential feedback addresses the inherent variance introduced by
noise in human evaluation, preferences do not convey much
information. In virtual environments, where these types of
methods are usually applied, this can be addressed by pro-
viding users with galleries (a set of multiple examples) to
choose from [Brochu et al., 2010]. However, real-world inter-
actions are constrained by sequential experiences and limited
by time and memory constraints of the users. We proposed a
relative scale with a periodic refresh to alleviate these draw-
backs. The scale represents a seven-point scale that ranges
from "Strongly Worse" to "Strongly Better" in terms of rel-
ative preferences. Interactions are carried out in q sampled
point batches. As a result, instead of a two-by-two approach,
comparisons are made between the q number of points, in-
creasing the amount of information acquired from each in-
teraction. The scale is refreshed after each batch, eliminat-
ing the user’s previous feedback. Following that, the user is
shown the previous best-observed point θ∗, and a fresh set
of sampled interactions begins. The benefits of the refresh
are twofold: first, as the scale does not carry absolute values,
impediments of drift and anchoring are removed; second, the
burden on participants’ memory is minimized, allowing them
to focus on the relationship between the few most recent in-



Figure 2: Block diagram of the preference learning loop. Red loop is online trajectory generation. Blue loop is preference learning that
happens after each interaction.

teractions. In this way, we aim to increase the impact of each
interaction, which in a practical scenario are often very lim-
ited. A schematic of the proposed controller and learning loop
is shown in Figure 2.

Nine participants participated in this study and performed
15 interactions each. After these interactions participants an-
swered the questionnaire:

• Were you able to find a satisfactory combination of pa-
rameters? (Yes: 6; Maybe: 3; No: 0)

• Did you feel that the robot was improving? (Yes: 5;
Maybe: 1; No: 3)

Thus, giving encouraging results to more formally examine
the application of BO-based algorithms for preferential learn-
ing in robotic applications.

While the preference in reactive behavior varied in the
overall speed and timing, participants seemed to converge to
reactive controllers, as opposed to non-reactive, straightfor-
ward, trajectories. This is likely due to the fact that in the
proposed scenario cooperative effort is appreciated as it more
accurately mimics human behavior, leading to smoother in-
teractions.

4 Short term predictions for robust handover
The main shortcoming of the trajectory generation method
introduced in the previous section was the dependency on an
estimate of the goal. To extend the robust behaviour to a more
general setting and avoid relying extensively on an accurate
goal estimate, a novel method inspired by the concept of an-
ticipatory control has been devised. The idea is to endow the
robot with "knowledge" of what should happen during a han-
dover and use any mismatch with what really happens to re-
act. Again, the base trajectory is generated with a dynamical
system to produce minimum-jerk reaching motion.

To make the robot able to distinguish whether the human
is trying to perform a handover or not, two predictors were
trained:

1. a short-term predictor of the future displacement of the
human hand;

2. a predictor of the direction in which the human hand
should move if it were to go for a handover.

The discrepancy between these two measures can then be ex-
ploited to detect the intent of a handover (or lack of), as shown
in Figure 4. This approach removed the dependency on the
final position of the handover, effectively decoupling the two
problems of a) where should the agent reach, and b) when
should the agent slow down or react. To also address the first
question, based on the work of [Prada et al., 2014], the robot
was made to converge to the predicted position of the human
hand. A diagram of the architecture is shown in Figure 3.

As the two predictors depend only on the past positions
of the human hand and the end-effector of the robot, the
method is simple, robust, and independent from the specific
setting or acquisition system. Furthermore, the two predictors
were implemented and tested to work at 30Hz, a rate typical
of machine-learning camera-based vision systems (e.g. for
hand tracking, gesture detection, skeleton pose reconstruc-
tion, etc.). This makes the method compatible with multiple
existing systems, as to potentially enhance them for higher-
level behaviours.

The detection of handover intention of the two predictors
has been tested both on data recorded from the previous ex-
periments and with a real setup, and has shown very promis-
ing results.

5 Projects and collaborations
The work presented has been supported by the European
Commission under the following projects.

HBP - The Human Brain Project (HBP) is one of the three
FET (Future and Emerging Technology) Flagship projects.
The HBP provides a framework where teams of researchers
and technologists work together to scale up ambitious ideas
from the lab, explore the different aspects of brain organiza-
tion, and understand the mechanisms behind cognition, learn-
ing, or plasticity. (Specific Grant Agreement No. 945539)

APRIL - The APRIL project (multipurpose robotics for
mAniPulation of defoRmable materIaLs in manufacturing
processes) is developing autonomous, dexterous, and market-
oriented robot prototypes to innovate the manufacturing of
flexible and deformable materials in European enterprises.
(Grant Agreement No. 870142)



Figure 3: Block diagram of the handover controller based on short-term predictions.

(a) Handover (b) Not handover

Figure 4: Exploiting short-term predictions to detect handover in-
tention.

6 Challenges and perspectives

While the combination of dynamical systems theory and ML
is a promising approach for online trajectory generation, there
are still some inherent drawbacks to overcome. Mainly, as
the trajectory is not planned before the execution, the prob-
lem of avoiding "bad" configurations (e.g. reaching joint lim-
its, self-collision, etc.) becomes more difficult. In the same
way, it can be more difficult to generate trajectories in clut-
tered environments. However, these problems are not new
to the field, and many proposed solutions already exist. Fur-
thermore, given the relative simplicity of collecting data for
such geometrical problems even inside a simulation, the ap-
plication of ML could improve this kind of online algorithms
significantly, while allowing to keep their typical responsive-
ness and adaptability. Addressing these hindrances will be
the focus of our future work on this topic.

Finally, by including preferential feedback, an intuitive
way to tune non-linearly correlated parameters is presented.
Approaches like this would allow users to tune robot behavior
without any expert knowledge. However, BO remains rather
greedy, and while it allows for fast learning, it tends to overfit
in the short term. Thus, investigation towards optimizing the
algorithm, and possibly increasing the number of parameters,
is warranted.
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