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Abstract
First person action recognition is becoming an in-
creasingly researched area thanks to the rising po-
pularity of wearable cameras. This is bringing to
light cross-domain issues that are yet to be addres-
sed in this context. Indeed, the information ex-
tracted from learned representations suffers from
an intrinsic “environmental bias”. This strongly
affects the ability to generalize to unseen scena-
rios, limiting the application of current methods
to real settings where labeled data are not availa-
ble during training. In this work, we propose a
framework for Unsupervised Domain Adaptation
(UDA) in First Person Action Recognition. To tac-
kle the domain-shift which exists under the UDA
setting, we first exploited a recent Domain Genera-
lization (DG) technique, called Relative Norm Ali-
gnment (RNA). It consists in designing a model
able to generalize well to any unseen domain, re-
gardless of the possibility to access target data at
training time. Then, in a second phase, we extended
the approach to work on unlabelled target data, al-
lowing the model to adapt to the target distribution
in an unsupervised fashion. For this purpose, we in-
cluded in our framework existing UDA algorithms,
such as Temporal Attentive Adversarial Adaptation
Network (TA3N), jointly with new multi-stream
consistency losses, namely Temporal Hard Norm
Alignment (T-HNA) and Min-Entropy Consistency
(MEC). Our approach leads to strong results in DG
and UDA settings on the EPIC-Kitchens-100. Fur-
thermore, we participate at the EPIC-Kitchens-100
Unsupervised Domain Adaptation (UDA) Challen-
ge1 in Action Recognition (entry ‘plnet’) achieving
the 1st position for ‘verb’, and the 3rd position for
both ‘noun’ and ‘action’.

1 Introduction
First person action recognition offers a wide range of oppor-
tunities which arise from the use of wearable devices. In fact,
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Figura 1: The correlation between the distinctive sound of an action
and its corresponding visual information or motion is not always
guaranteed across different domains. Thus, effectively combining
multi-modal information from multiple sources is fundamental to
increase the capability to recognize daily actions.

since it intrinsically comes with rich sound information, due
to the strong hand-object interactions and the closeness of the
sensors to the sound source, it encourages the use of audito-
ry information. Moreover, the continuous movement of the
camera, which moves around with the observer, strongly mo-
tivates the use of secondary modalities capturing the motion
in the scene, such as optical flow.

Our idea is that exploiting the intrinsic peculiarities of all
these modalities is of crucial importance, especially in cross-
domain scenarios. In fact, these modalities suffer from a do-
main shift which is not of the same nature. For instance, the
optical flow modality, by focusing on the motion in the scene
rather than on the appearance, is less sensitive to environ-
mental changes, and thus potentially more robust than the vi-
sual modality when changing environment [Munro e Damen,
2020] (Figure 1). On the other side, the domain shift of au-
ditory information is very different from the visual one (e.g.,
the sound of ‘cut’ will differ from a plastic to a wooden cut-
ting board). For all those reasons, the classifier should be able
to measure and understand which modality is informative and
should rely on in the final prediction, and which is not.

To this purpose, authors of [Planamente et al., 2022] recen-
tly proposed a multi-modal framework, called Relative Norm
Alignment network (RNA-Net), which aims to progressive-
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ly align the feature norms of audio and visual (RGB) mo-
dalities among multiple sources in a Domain Generalization
(DG) setting, where target data are not available during trai-
ning. In that work, they bring to light that simply feeding
all the source domains to the network without applying any
adaptive techniques leads to sub-optimal performance. In-
deed, a multi-source domain alignment allows the network to
promote domain-agnostic features.

Interestingly, the availability of multiple sources in the of-
ficial challenge dataset make it perfect to tackle the problem
under a DG setting. To this purpose, we extended RNA-Net
to the Flow modality, obtaining remarkable results without
accessing target data. In a second stage, we further adapted
it to work with unlabelled target data under the standard Un-
supervised Domain Adaptation (UDA) setting. Finally, our
final submission was obtained by ensembling different model
streams by means of DA-based consistency losses, namely
Temporal Hard Norm Alignment (T-HNA) and Min-Entropy
Consistency (MEC).

2 Our Approach
In this section, we first describe the DG approach we used.
Then, we illustrate its extension to unlabelled target data
under the standard UDA framework. Finally, we repurpo-
se existing DA-based losses to induce consistency between
different architectures.

2.1 Domain Generalization
The multi-source nature of the proposed challenge setting
makes it perfect to deal with the domain shift using DG tech-
niques. Thus, we first exploited a method which has been
recently proposed to operate in this context, called Relati-
ve Norm Alignment (RNA) [Planamente et al., 2022]. This
methods consists in performing an audio-visual domain ali-
gnment at feature-level by minimizing a cross-modal loss
function (LRNA). The latter aims at minimizing the mean-
feature-norm distance between the audio and visual features
norms among all the source domains, and it is defined as

LRNA =

(
[h(Xv)]

[h(Xa)]
− 1

)2

, (1)

where h(xm
i ) = (∥·∥2 ◦ fm)(xm

i ) indicates the L2-norm
of the features fm of the m-th modality, [h(Xm)] =
1
N

∑
xm
i ∈Xm h(xm

i ) for the m-th modality and N denotes the
number of samples of the set Xm = {xm

1 , ..., xm
N}.

Authors of [Planamente et al., 2022] proved that the norm
unbalance between different modalities might cause the mo-
del to be biased towards the source domain that generate fea-
tures with greater norm and thus causing a wrong prediction.
Indeed, by simultaneously solving the problem of classifica-
tion and relative norm alignment on different domains, the
network extracts a shared knowledge between the different
sources, resulting in a domain-agnostic model.

In our submission to the EPIC-Kitchen UDA challenge, we
extended the RNA-Net framework to the optical flow moda-
lity, and we exploited the multiple sources available from the
official training splits to show the effectiveness of RNA loss
in a multi-source DG setting.

2.2 Domain Adaptation
In this section, we describe the UDA techniques that are
integrated in our approach.

Relative Norm Alignment Network. We followed the ex-
tension towards the UDA setting proposed in [Planamente et
al., 2022], which is possible thanks to the unsupervised nature
of RNA. In order to consider the contribution of both source
and target data during training, we redefined LRNA under the
UDA setting as

LRNA = Ls
RNA + Lt

RNA, (2)

where Ls
RNA and Lt

RNA correspond to the RNA formulation
in Equation 1 illustrated above, when applied to source and
target data respectively.

Temporal Attentive Adversarial Adaptation Network
(TA3N). Authors of [Chen et al., 2019] proposed an UDA
technique based on three components. The first one, called
Temporal Adversarial Adaptation Network (TA2N), consists
in an extension of DANN [Ganin e Lempitsky, 2015], ai-
ming to align the temporal features on a multi-scale Temporal
Relation Module (TRM) [Zhou et al., 2018] through a gra-
dient reversal layer (GRL). The second component is based
on a domain attention mechanism which guides the tempo-
ral alignment towards features where the domain discrepancy
is larger. Finally, the third component uses a minimum en-
tropy regularization (attentive entropy) to refine the classifier
adaptation.

2.3 Ensemble UDA losses
For our final submission, different models are used in order to
exploit the potentiality of popular video architectures. Trai-
ning individually each backbone with standard UDA proto-
cols results in an adapted feature representation which varies
from stream to stream. Our intuition is that this aspect could
impact negatively the training process and the performance
on target data. In fact, since the domain adaption process acts
on each architecture independently, different prediction logi-
ts are obtained on target data. When combining them, this
could cause a mismatch between the final scores, increasing
the level of uncertainty of the model. Thus, we impose a con-
sistency constraint between feature representations from dif-
ferent models, by repurposing existing UDA loss functions to
operate between multiple streams. Those are:

Temporal Hard Norm Alignment (T-HNA). It re-
balances the contribution of each model during training by
extending HNA [Planamente et al., 2022] to align the norms
of features coming from the different streams towards the sa-
me value R. This is applied on features extracted from mul-
tiple scales of each TRN module. The resulting LT-HNA is
defined as

LT-HNA =
∑
b

(
[ht(X

b)]−R
)2

, (3)

where ht denotes the L2-norm of features extracted from the
t-th multi-scale level of the b-th backbone network.

Min Entropy Consensus (MEC loss). We extended the
loss proposed in [Roy et al., 2019] to encourage coherent



UNSUPERVISED DOMAIN ADAPTATION LEADERBOARD

Rank Verb Top-1 Noun Top-1 Action Top-1 Verb Top-5 Noun Top-5 Action Top-5
chengyi 1 53.16 34.86 25.00 80.74 59.30 40.75
M3EM 2 53.29 35.64 24.76 81.64 59.89 40.73
plnet 3 55.22 34.83 24.71 81.93 60.48 41.41
EPIC_TA3N [Damen et al., 2020] 6 46.91 27.69 18.95 72.70 50.72 30.53
EPIC_TA3N_SOURCE_ONLY [Damen et al., 2020] 12 44.39 25.30 16.79 69.69 48.40 29.06

Tabella 1: Leaderboard results of EPIC-Kitchens Unsupervised Domain Adaptation Challenge. The results obtained by the top-3 participants
and the provided baseline methods are reported. Bold: highest result; Green: our final submission.

ENSEMBLE UDA LOSSES

Top-1 Top-5

Verb Noun Action Verb Noun Action
Ensemble 52.83 30.82 21.96 81.04 52.67 46.66
Ensemble+T-HNA 53.84 32.54 22.65 80.63 54.86 48.03
Ensemble+T-HNA+MEC 54.02 33.53 23.58 81.00 55.03 48.27

DOMAIN GENERALIZATION

Target Verb Top-1 Verb Top-5

Source Only ✗ 44.39 69.69
EPIC_TA3N [Damen et al., 2020] ✓ 46.91 72.70
RNA-Net [Planamente et al., 2022] ✗ 47.96 79.54
EPIC_TA3N+RNA-Net ✓ 50.40 80.47

Tabella 2: Left. Results on the EPIC-Kitchen validation set with different ensembling UDA losses. Right. Results on EPIC-Kitchen test set
under the DG setting. Bold highest result.

predictions between different models. The resulting loss is
defined as:

LMEC = − 1

m

m∑
i=1

1

b
max
y∈Y

∑
b

logpb(y|xt
i) (4)

where m is the cardinality of the batch size of the target set, y
is the predicted class, and logpb(y|xt

i) is the prediction proba-
bility of the b-th backbone network. The intuitive idea behind
the proposed approach is to encourage different backbones to
have a similar predictions.

3 Framework
In this section, we describe the architectures of the fea-
ture extractors used to produce suitable multi-modal video
embeddings, and the fusion stategies adopted to combine
them. We complete this section with the description of the
hyper-parameters used for the training.

3.1 Architecture
Backbone. For our submission, we adopted different net-
work configurations. In the first one, corresponding to the
RNA-Net framework in [Planamente et al., 2022], we used
the Inflated 3D ConvNet (I3D), pre-trained on Kinetics [Car-
reira e Zisserman, 2017], for RGB and Flow streams, and a
BN-Inception model [Ioffe e Szegedy, 2015] pre-trained on
ImageNet [Deng et al., 2009] for the auditory information.
Each feature extractor produces a 1024-dimensional repre-
sentation which is fed to an action classifier. In the second
configuration, we used BNInception for all the three streams,
using pre-extracted features from a TBN [Munro e Damen,
2020] model trained on EPIC-Kitchens-55. In the last con-
figurations, we used standard ResNet50 [He et al., 2016] for
all the streams using TSN [Wang et al., 2016] and TSM [Lin
et al., 2019] models pre-trained on Epic-Kitchen552.

2https://github.com/epic-kitchens/
epic-kitchens-55-action-models

λRNA λHNA R λMEC γ β
1 0.0006 40 0.01 0.003 0.75, 0.75, 0.5

Tabella 3: UDA losses hyper-parameters used during training.

Multi-modal fusion strategies. In all the above mentioned
configurations, each modality is processed by its own backbo-
ne, and the corresponding extracted representations are then
fused following different strategies. For RNA-Net, we follo-
wed a standard late fusion strategy, consisting in averaging
the final score predictions obtained from two different fully-
connected layers (verb, noun) from each modality. In the
other configurations, we adopted the mid-fusion strategy pro-
posed in [Kazakos et al., 2019], to generate a common frame-
embedding among the modalities and used a Temporal Rela-
tion Module (TRM) [Zhou et al., 2018] to aggregate features
from different frames before feeding the final embeddings to
the verb and noun classifiers.

3.2 Implementation Details

We trained I3D and BNInception models with SGD optimi-
zer, with an initial learning rate of 0.001, dropout 0.7, and
using a batch size of 128, following [Planamente et al., 2022].
Instead, when using pre-extracted features from ResNet50 or
BNInception, we trained the TRM modules on top of them
for 100 epochs with an initial learning rate of 0.03, decayed
after epochs 30 and 60 by a factor of 0.1. We used a batch si-
ze of 128 with SGD optimizer. In Table 3 we report the other
hyper-parameter used. Specifically, we indicate with λRNA,
λT−HNA and λMEC the weights of RNA, T-HNA and MEC
losses respectively, and with R the values of the radius of
T-HNA (see Equation 4). In addition, we report the values
used in TA3N to weight the attentive entropy loss (γ) and the
domain losses at different levels (β).
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4 Results and Discussion
In Table 1 we report our best performing model on the target
test, achieving the 1st position on ‘verb’, 3rd on ‘noun’ and
‘action’, and 1st position on Top-5 accuracy on all catego-
ries. In Table 2 (left) we show an ablation on the contribution
of the proposed ensemble UDA losses, T-HNA and MEC re-
spectively, on the official validation set. As it can be seen,
they improve Top-1 accuracy on all categories by up to 2%,
proving the effectiveness of imposing a consistency between
features from different streams.

How well do DG approaches perform? We show in Table
2 (right) the results obtained under the multi-source DG set-
ting, when target data are not available during training. Noti-
ceably, RNA outperforms the baseline Source Only by up to
3% on Top-1 and 10% on Top-5, remarking the importance
of using ad-hoc alignment techniques to deal with multiple
sources in order to effectively extract a domain-agnostic mo-
del. Moreover, it outperforms the very recent UDA technique
TA3N without accessing to target data. Interestingly, when
combined with EPIC_TA3N, it further improves performan-
ce, proving the complementarity of RNA to other existing
UDA approaches.
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