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Abstract

The chips contained in every electronic device are
manufactured over circular silicon wafers. The
growing demand of semiconductors in nearly all
the industrial sectors has made human quality in-
spection of wafers infeasible. Thus, electron-
ics and semiconductors manufacturers require ad-
vanced Artificial Intelligence techniques to auto-
matically monitor their entire production. Here we
present the research projects established in a collab-
oration between Politecnico di Milano and STMi-
croelectronics, in which we design deep learning
models to i) recognize and interpret defect patterns
in silicon wafers during the manufacturing pro-
cess, and i) to retrieve similar images from a large
and partially annotated database collecting Trans-
mission Electronic Microscopy images of wafer
parts. Our CNNs for classifying defect patterns are
currently employed in several production sites of
STMicroelectronics, and our image retrieval solu-
tion is being tested at the STMicroelectronics fac-
tory in Agrate Brianza.

1 Introduction

The demand for semiconductors has been increasing at an
astonishing rate in the latest years due to the growth and
technological development of sectors such as automotive and
Internet-of-Things. Silicon wafers represent the base upon
which every chip is built and require a long and high-tech
manufacturing process. Nowadays, the huge production vol-
umes prevent operators from visually controlling 100% of
wafers at each production step, thus it is of key importance
to use automatic techniques to facilitate quality inspection.
Over the past few years, Politecnico di Milano and STMi-
croelectronics have established multiple research projects
to develop Machine Learning tools for automatically mon-
itoring silicon wafers in different settings and production
stages. This partnership has involved STMicroelectronics re-
searchers and production engineers, an Associate Professor
and three PhD students (whose scholarships have been spon-
sored by STMicroelectronics) from Politecnico di Milano. In
2019, one of the PhD students has joined the STMicroelec-
tronics research team, after graduating, while the others are
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Figure 1: Examples of WDMs from the classes included in the ST
dataset, and total number of samples in each class.
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currently working towards their PhDs. In four years, these
projects involved six MSc students from Politecnico di Mi-
lano through curricular internships at STMicroelectronics.

The primary research goal we addressed was the automatic
detection of problems and failures in the production process.
Current quality inspection machines can in fact exclusively
identify localized defects, returning a list of defective loca-
tions in each wafer, namely a Wafer Defect Map (WDM).
Production issues such as a robot accidentally scratching the
wafer surface, can be instead detected by analyzing patterns
over the WDM. Not surprisingly, the classification of defect
patterns has been widely investigated in the literature [Huang
e Pan, 2015] but in rather simplistic settings where §) all the
classes of defect patterns are assumed to be known and repre-
sented in the training set and i) WDMs are transformed into
low-resolution images.

The major outcome of the research collaboration is an ad-
hoc Convolutional Neural Network (CNN) that both classi-
fies known patterns in WDMs, corresponding to specific pro-
duction issues, and also detects unknown defect patterns as
in Open-Set Recognition (OSR) [Geng et al., 2021]. Re-
markably, our CNN, which is currently deployed in several
STMicroelectronics production sites, can process full resolu-
tion WDMs despite their huge size (defect coordinates span a
20,000x20, 000 grid, corresponding to a precision of 10um).
This research work is presented in two articles [di Bella ez al.,
2019; Frittoli ef al., 2021] and a patent [Moioli et al., 2021].



We also developed a visual explanation tool to support deci-
sion making, which is presented in [Morbidelli e al., 2020].
We also designed an image retrieval system based on deep
neural networks to support production engineers in the search
for similar Transmission Electronic Microscopy (TEM) im-
ages of wafer parts. TEM images are collected in a large
database called IMAGO, and the network returns a set of im-
ages from IMAGO that are most similar to a given query im-
age. This automatic retrieval system allows a fast and reli-
able access to IMAGO, helping engineers to diagnose defects
in wafers at every production stage. The main challenge for
the training of this system is the lack of annotations for the
vast majority of the database, which we address in [Gatta,
2021] by training the network in a hybrid manner, using both
siamese and autoencoder loss functions for labeled and un-
labeled samples, respectively. The image retrieval system is
planned to be deployed at STMicroelectronics, and is cur-
rently being tested at the production site in Agrate Brianza.

2 Deep Learning for Detecting Process
Failures from Wafer Defect Maps

2.1 Industrial Scenario

In a wafer manufacturing pipeline there are multiple inspec-
tion machines operating at different stages. Inspection ma-
chines cannot directly detect failures in the manufacturing
process, but only defective locations in each wafer, listed in
a Wafer Defect Map (WDM). In normal conditions, WDMs
contain a small number of randomly distributed defects. In
contrast, production failures result in specific patterns ap-
pearing on WDMs. For example, when a robot manipulating
wafers accidentally scratches their surface, WDMs might ex-
hibit geometric patterns (see Figure 1). Recognizing these
patterns as soon as they are generated allows to promptly
identify and solve the issues in the production pipeline, thus
preventing them from damaging the entire production.

2.2 Wafer Defect Maps Monitoring

A WDM w is a list of 2D coordinates of defects within a
wafer. Since these coordinates belong to a grid defined by
the resolution of the inspection machine, w can be seen as
a sparse, binary image w € {0,1}%*X  where each pixel
corresponds to an inspected location, which is set to 1 if there
are defects and 0 otherwise. Like many industrial problems,
there are no public annotated datasets to train a deep learning
model. Thus, the first challenge to address was the acquisition
and the labeling of a large dataset.

The label of each WDM can either be Normal (i.e., no
defective patterns) or one of the twelve classes of defective
patterns identified by production engineers, illustrated in Fig-
ure 1. Failures that had never been observed might result in
an Unknown pattern over WDMs, and also this case must be
handled by the classifier. Therefore, our goal is to train an
open-set classifier K that associates to each WDM w either a
known class label or the Unknown label. A major challenge
when handling WDMs is that traditional CNNs cannot be di-
rectly applied because images obtained from a full-resolution
WDM are huge: in our case, WDM:s span a 20, 000 x 20, 000

grid, resulting in a 3 GB grayscale image. A second chal-
lenge to address is class imbalance, because the vast majority
of WDMs are Normal, while some patterns are very rare and
thus under-represented.

Although pattern recognition on WDMs can be performed
automatically, operators must decide whether and how to in-
tervene based on classifier predictions. Since deep neural
models are not interpretable, we decided to pair the classi-
fier with an explainability tool to support decision-making. In
this case, our goal is to provide each prediction with a high-
resolution saliency map highlighting the regions of the wafer
that have mostly influenced the prediction.

2.3 Proposed Solutions

Dataset Acquisition. Inspection machines produce a
WDM for each analyzed wafer. Annotating a large amount
of WDMs is a tedious work that has to be carried out by ex-
perts, and as such is time-consuming and prone to fatigue-
related errors. We therefore designed an intuitive and efficient
Graphic User Interface, to allow production engineers to
quickly annotate 31,893 WDMs, which form the ST dataset.

Open-Set Recognition on WDMs. We designed a deep
learning pipeline for WDM monitoring, which we address as
an Open-Set Recognition problem. We leverage Submani-
fold Sparse Convolutions [Graham et al., 2018] to efficiently
process full-resolution WDMs, and customized data augmen-
tation procedures to overcome class imbalance. Class imbal-
ance is rather typical in industrial monitoring scenarios where
the vast majority of products is normal.

In [di Bella et al., 2019] we address WDM classification
in a closed-set scenario, i.e., assuming that all the possible
classes are known and represented in the training set. Tradi-
tional CNNs for image classification cannot be directly ap-
plied to WDMs because of their huge resolution, so all the
previous solutions adopt binning [Huang e Pan, 2015] to pro-
duce low-resolution images. However, binning might over-
look important information contained in the original WDMs.
For this reason, we implement a Submanifold Sparse Convo-
Iutional Network (SSCN) [Graham et al., 2018], which can
efficiently process sparse images at an arbitrary resolution by
taking as input the list of coordinates of the active sites of
the image (in our case, the defect coordinates). To tackle the
severe imbalance [di Bella et al., 2019] we propose class-
specific transformations to augment training data. Moreover,
to improve classification performance, we apply test-time
augmentation using label-preserving transformations.

In [Frittoli et al., 2021] we extend our SSCN for WDM
classification to address Open-Set Recognition, where we
solve the additional task of detecting Unknown defect pat-
terns. We follow the simple yet effective approach of apply-
ing an outlier detector based on a Gaussian Mixture Model
(GMM) to the latent representation of the SSCN, namely the
output of its penultimate layer. Our intuition is that a clas-
sifier maps instances of the same class in the same region of
the latent space. Thus, we model the distribution of the la-
tent representations as a GMM. During testing, we classify as
Unknown those WDMs having a low likelihood with respect
to the GMM. Finally, we show that test-time augmentation
can be safely adopted also in OSR, since our transformations
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Figure 2: Confusion matrix obtained by our SSCN through 10-fold
cross-validation on the ST dataset.

cannot turn an Unknown WDM into an instance of a known
class.

Explainability. To get an explanation of network’s output,
we designed a general framework that leverages data aug-
mentation to compute high-resolution saliency maps, indicat-
ing those regions of the image that have mostly influenced
a network in providing a specific output. To be meaningful,
saliency maps have to be well localized around the object of
the queried category (class-discriminative) and should cap-
ture fine-grained details (high-resolution).

A very popular method to explain the output of a CNN is
Grad-CAM [Selvaraju et al., 2017], which however returns
low-resolution saliency maps. In [Morbidelli et al., 2020]
we present Augmented Grad-CAM, which leverages test time
augmentation to upsample saliency maps returned by Grad-
CAM. To this purpose, we formulate a specific optimization
problem inspired by Multi-Frame Super Resolution (MFSR),
where we invert an unknown downsampling process by fus-
ing several noisy low-resolution images. We model saliency
maps computed from augmented versions of the same input
as generated by a process that downsamples and degrades an
ideal high-resolution saliency map that we want to recover.
The procedure allows us to extract the slightly different infor-
mation included in each saliency map from augmented im-
ages. The whole upsampling procedure can be efficiently
performed on the GPU at inference time and our TensorFlow
implementation has been publicly released.

2.4 Results and Industrial Impact

In our experiments we show that processing full-resolution
WDMs by SSCN yields better classification performance
than using traditional CNNs trained on low-resolution im-
ages [di Bella et al., 2019]. In particular, our SSCN turns out
to be more robust to class imbalance than standard CNNs,
and our augmentation procedure substantially improves the
accuracy of both SSCN and CNNs, especially on under-

Figure 3: Saliency maps of a WDM referred to two defect patterns:
Fingerprints (left), and GeoScratch (right). The saliency maps high-
light the location of the patterns on the WDM.

represented classes, compared to traditional augmentation.
Most remarkably, our experiments show that our OSR solu-
tion achieves superior unknown detection performance than
alternatives from the literature, which we applied on top of
the same SSCN for a fair comparison [Frittoli et al., 2021].

Beside two publications in major international scientific
venues, our research on WDM monitoring resulted in a US
patent [Moioli et al., 2021] and a prestigious corporate award
at STMicroelectronics. Thanks to its excellent classification
performance, illustrated by the confusion matrix in Figure 2,
our solution is currently deployed in several STMicroelec-
tronics production sites all over the world.

We also demonstrate that Augmented Grad-CAM yields
high-resolution and class-discriminative saliency maps which
are also particularly useful in WDM monitoring. Figure 3 re-
ports a WDM containing two different defect patterns (Geo-
Scratch and Fingerprints) where the saliency map correctly
highlights the regions covering the target pattern.

3 Deep Learning for Retrieving Images of
Wafer Parts

3.1 Industrial Scenario

Inspection machines acquire TEM (Transmission Electron
Microscopy) images over specific parts of the analyzed wafer
samples. In the Agrate Brianza production site, hundreds of
these images are acquired every day and these are collected in
a large database called IMAGO. These images represent very
different structures corresponding to both fundamental steps
in the manufacturing process and recurrent elements in inte-
grated circuits. These images are acquired at very different
scales (see Figure 4), colors and resolutions, and only a small
fraction of the database has been labeled in the classes corre-
sponding to the depicted structures. Only five structures have
been annotated, but many others remain unlabeled. There-
fore, an automatic retrieval system, able to efficiently scan the
database and recover images belonging to the same class of a
query image, is of paramount importance for quality control.

3.2 Retrieval of TEM Images

Given a database D containing n images, the problem of im-
age retrieval consists in selecting the k£ images in D that are
most similar to a query ¢ € D. In our framework, we con-
sider images to be similar when they belong to the same class



Figure 4: TEM images belonging to the same class of IMAGO, ac-
quired at different scales. As can be seen, images belonging to the
same class can be quite different one from the other, so a purely un-
supervised approach is not suitable to perform effective retrieval.

in the IMAGO database. State-of-the-art methods to solve
the image retrieval problem are mainly based on neural net-
works such as siamese networks or autoencoders. However,
the challenges of the IMAGO database prevent these tech-
niques, which are suited only for supervised or unsupervised
problems, to perform an effective retrieval in the IMAGO
database.

3.3 Proposed Solution

We design a retrieval system that is based on a specifically
designed neural network. This network can be interpreted as
a function f : RV*M _ R? which takes as input the im-
age and returns a compact latent representation. We expect
the distance between feature vectors of similar images to be
small, while dissimilar images are supposed to fall far apart
in the latent space. Therefore, first we extract the latent rep-
resentations of all the images of the IMAGO dataset, then
we perform the retrieval by similarity search. The network f
is trained as a siamese network over labeled samples, where
we minimize the distance between two similar samples while
maximizing the distance between dissimilar ones. In con-
trast, over unlabeled samples we train f as an autoencoder,
minimizing the reconstruction error of the input image. The
training is performed alternating the optimization of the two
losses, and this approach allows f to learn features even from
the unknown classes and to prevent overfitting over the small
percentage of labeled images available. To further improve
the retrieval performance, we implement a query expansion
procedure, which consists in averaging the latent represen-
tation of the query image with its k& nearest neighbors over
training data. The resulting representation is then issued to
the network as new query to perform retrieval. This allows
queries to return meaningful results primarily characterized
by the structure and less biased by individual features of each
image.

3.4 Results and Industrial Impact

Our experiments were conducted over a subset of the IMAGO
database including 34,858 images, 10% of which is labeled.
Results in [Gatta, 2021] show that our model outperforms
both state-of-the-art solutions based on a single siamese net-
work and a single autoencoder in terms of average precision
and mean average precision. Our automatic retrieval sys-
tem is currently being tested at the Agrate Brianza factory
to replace the visual inspection of the TEM images, enabling
faster and more effective retrieval.

4 Conclusion and Future Work

Artificial Intelligence is becoming increasingly important in
semiconductor manufacturing. The fruitful partnership be-
tween Politecnico di Milano and STMicroelectronics has pro-
duced innovative and effective solutions for monitoring the
silicon wafer manufacturing pipeline, resulting in scientific
publications, a patent, and a major corporate award. Most
remarkably, our WDM classification method is having a real
impact, being deployed in several STMicroelectronics facto-
ries across the world. Future work will concern the appli-
cation of our image retrieval system at industrial level and
the extension of our explainability tool to our Submanifold
Sparse Convolutional Network for WDM classification.
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