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Abstract
Yarn quality control is a crucial step in producing
high quality textile end products. Online yarn te-
sting can reduce latency in necessary process con-
trol by providing rapid insights into yarn quality,
leading to production of superior quality yarns. Ho-
wever, both widely used capacitance based even-
ness testers and emerging imaging based evenness
testing systems are largely offline in operation (i.e.
a posteriori). A suitable online system that could
be employed to test quality of a variety of yarns
in normal industrial processing conditions does not
yet exist. In this study, we propose an online even-
ness testing system for measurement of a certain
type of yarn defect called nep by using imaging
and computer vision techniques. The developed sy-
stem directly captures yarn images on a spinning
frame and uses Viola-Jones object detection algori-
thm for real time detection of nep defects. The vali-
dation of nep detection algorithms and comparison
of the new method with an existing evenness tester
in terms of nep count demonstrated its reasonable
defect detection accuracy and promising potential
for application in wider yarn spinning industry.

1 Introduction
Natural fabrics are made of plant-based fibres, such as cotton,
or animal fibres, such as wool or silk. The yarn production
process involves several steps such as carding and spinning
of the fibres, for providing the original material the strength
required for producing robust fabrics. Due to organic and cli-
matic conditions, the natural fibers intrinsically possess high
degree of variations Similarly, also synthetic fibers, although
produced in controlled industrial settings, are far from being
perfectly uniform. During the spinning process, this variation
in the raw material translates to the yarn in form of uneven-
ness. An additional source of yarn irregularities is the va-
riation related to the yarn spinning process. Such variations
include but are not limited to inadequate machine settings,
faulty components and mechanical variations. For example, a
worn out or damaged roller in a drafting system would not be
able to evenly draft the fibrous strand to achieve required fine-
ness, resulting in a periodic occurrence of unwanted thick or

Figura 1: Different types of yarn defects a) neps b) thin place and c)
thick places [Shaikat, 2014].

thin places. Similar type of issues arise from inadequate ma-
chine settings (i.e. speeds and gauges) and slippage among
the moving components.

Yarn evenness represents the uniformity in fiber mass di-
stribution along yarn length. A yarn that exhibits lower fre-
quency and amplitude of mass related variations is classified
as an even yarn and vice versa. Yarn irregularities or defects
related to its evenness profile are generally categorized into
three categories, depending on their thickness with respect
to the base yarn diameter and their length. These three ca-
tegories are neps (appearing as ‘small knots’ tied within a
yarn), thick places (also called slubs) and thin places [Kre-
tzschmar e Furter, 2008], as shown in Fig. 1. A significant
variation in fibre mass appears as a noticeable defect on yarn
surface deteriorating its appearance [Srinivasan et al., 1992;
Shamey e Hussein, 2005] and undermining its mechanical
performance [Haleem et al., 2021]. The undesired variations
in shades often lead to fabric rejection by the customer and
consequent loss of economic value of the producion.

Overall produced yarn quality can be improved when the
cause of the defects is promptly intercepted. In particular, the
process related variations could be substantially minimized, if
not fully eradicated, by exerting effective process control and
timely maintenances of the critical mechanical components.

The yarn quality is assessed using capacitive laboratory
scale evenness testers, which provides an overall picture of
the production quality testing a limited yarn sample from few
randomly selected bobbins. However, these post-production
tests cannot provide the live insights that are fundamental for
addressing the cause of the defects.

Recently, several studies have reported the application of
imaging methods to evaluate the evenness of yarns [Carva-



Figura 2: Image acquisition system for online yarn imaging is moun-
ted on a ring spinning frame.

lho et al., 2009; Ling et al., 2010; Eldessouki et al., 2014;
Roy et al., 2017; Li et al., 2018; Pinto et al., 2019]. Even
if these studies proposed multiple imaging based yarn even-
ness testing methods as an alternative to the traditional ap-
proaches, none of these were focused on online yarn evenness
testing as they used images that were either taken from static
yarn samples or from yarns moving on laboratory scale trans-
port devices.Hence, to the best of our knowledge, a suitable
online yarn evenness tester remained non-existent.

In this study, we propose a new system for online measu-
rement of yarn evenness to address the above described gap.
An optimal image acquisition setup was developed to direc-
tly capture high quality yarn images in real time yarn produc-
tion. The images were used to train and validate computer vi-
sion algorithms to identify a certain type of yarn defect called
neps. The new system was then employed in regular indu-
strial production for online testing of different yarn varieties
and the outcomes were validated through comparison with an
existing evenness tester.

2 Yarn image acquisition system
A Basler 1440–220um digital camera (Basler, Germany) fit-
ted with a 50 mm lens (Tamron, Japan) and two extension
rings of 5 mm thickness each, was deployed on a Marzoli
MST Spin Tester ring frame (Marzoli, Italy). The camera was
connected to a Dell Precision 7510 laptop (Dell, USA) th-
rough a USB 3 connection and imaging was controlled using
Basler Pylon camera software suite (version 5.2.0). The phy-
sical distance between the camera and yarn specimen was 21
cm, which resulted in a vertical field of view of 1.2 cm length,
along yarn axis. The digital resolution of the camera was set
up at 1100 × 1080 pixels and its exposure time was set to 3
µs. The imaging speed (i.e. frames per second or FPS) was
calculated for yarn specimens based on their delivery speed.
A LED type light source GES-6 K-20-T (Genesi Lux, Italy)
of 3600 lumens flux was applied to provide ample amount of
illumination. Both camera and light source were mounted on
two separate Manfrotto 244RC mounting arms (Manfrotto,
Italy). This experimental setup is shown in Fig. 2.

Figura 3: Cropped (a) original and (b) synthetic nep images.

3 Computer Vision models for nep detection
Three different image classifiers (termed as A, B and C) ba-
sed on Viola-Jones algorithm have been developed. The three
models vary in terms of the input data used in their training
phase. We have chosen to use Viola-Jones algorithm because
of its execution speed, low computational hardware require-
ments and good generalization capabilities also when a low
number of training samples is available. Performance com-
parison with convolutional network based approaches is un-
der investigation. The training data comprised of positive and
negative images in 2:1 and these images were scaled with a
ratio of 0.2 and 0.1, respectively to optimise training time.
The number of training epochs were 10 for each model.

In order to train Model A, 33 images of original neps were
cropped out of positive images from training set, as shown in
Fig. 3(a). Due to imbalanced dataset and lower number of nep
images, data augmentation techniques based on linear image
transformations i.e. scaling, translating and rotating were ap-
plied to produce 5000 nep images. These were combined with
2500 negative yarn images, also taken from the training set,
and fed to the algorithm to train model A. For model B, simi-
lar augmentation strategy was applied on 32 ‘synthetic nep’
images instead, which are computer generated images of half
ellipses and vary in terms of major and minor axes length, as
shown in Fig. 3(b). Lastly, a combination of both 33 origi-
nal and 32 synthetic nep images was used to augment 5000
positive images to train model C.

4 Preliminary results
The three nep detection models i.e. A, B and C were valida-
ted using a validation dataset, which consisted of 100 positi-
ve (with neps) and 100 negative (without neps) yarn images.
The classifications achieved by each model were categorised
as true positive (TP), true negative (TN), false positive (FP)
and false negative (FN). These parameters are provided for
all three models in form of confusion matrices, as shown in
Fig. 4, which suggest superior accuracy of Model C compa-
red to both models A and B as it correctly classified 86% neps
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Figura 4: Confusion matrices for all three nep detection models.

and 98% negative yarn images. In addition, its false positives
and negatives rate were 2% and 14% respectively.

In order to quantify the performance and facilitate inter-
model comparison, four evaluation metrics, namely detection
success rate (DSR), sensitivity, specificity and F-score, we-
re calculated. The values of these metrics are provided in
Table 1.

Model DSR Sensitivity Specificity F-score
A 0.66 0.81 0.51 0.62
B 0.9 0.86 0.93 0.89
C 0.92 0.86 0.98 0.91

Tabella 1: Four valuation metrics as calculated for each nep detec-
tion model.

The DSR characterises the ability of a classifier to accura-
tely identify both positive and negative image classes. The
Sensitivity of a classifier is a ratio of correctly identified po-
sitive images to the total number of positive image detections
while the specificity is a ratio of correctly identified negati-
ve images to the total number of negative identified images.
The F-score is a cumulative representation of both sensitivity
and specificity. A comparison of these metrics for all three
models also suggest higher detection score, sensitivity, speci-
ficity and F-score value for Model C, making it a clear choice
for online nep detection application.

Out of all three models, model A which was trained using
original nep images showed most inferior performance me-
trics while model B, which was trained using synthetic nep
images showed significantly superior results compared to mo-
del A but slightly lesser performance than model C. A closer
look into inferior performance of model A points out a clo-
se resemblance between textures of neps and yarns as a po-
tential reason for their underperformance. The similarly of
textures is due to the fact that neps and yarns are made from
the same fibrous materials and imaged exactly in the same
way, hence, resulting in similar grayscale intensities of their
constituting pixels. The Haar-like features calculated by the
computer vision algorithm from both neps and yarns would
be essentially similar, which limited the ability of Model A
to effectively differentiate between neps and yarns resulting
in both higher number of false positives and false negatives.
Moreover, the shape of neps were highly irregular and did not
serve as a differential metric for nep identification either. On
the other hand, models B and C, both of which used synthetic
nep images, were able to differentiate between neps and yarns

as the grayscale intensity values of pixels lying within synthe-
tic neps were uniform and clearly different than the normal
yarns. In addition, their shape was also highly regular, which
improved differentiation criteria between both groups.

A comparison of online nep detection system (O) with
Uster Tester 3 (U) is provided in Table 2, where each data
point represents an average of 3 observations.

Tabella 2: Four valuation metrics as calculated for each nep detec-
tion model.

The results show a substantial difference between both me-
thods in terms of total number of neps and within nep sub
classes. As a general trend, the number of neps detected by
the online measurement technique are almost always higher
than the number of neps reported by Uster tester in respec-
tive categories, except for + 140% neps category. However,
the extent of this difference is particularly higher for coar-
ser yarns (i.e. 59.05 tex) compared to finer yarns (i.e. 14.76
tex). The difference between total number of neps measured
using both methods is also statistically significant as evalua-
ted using Student’s T-test (P-values: 59.05 tex yarn = 0.0002,
29.5 tex yarn = 0.0026, 14.76 tex yarn = 0.0032). The contra-
dictions in the nep measurements from both methods in terms
of substantiality and statistical significance is particularly in-
teresting because the results achieved from online evenness
measurement system comes with an imagery evidence as all
nep containing images were stored as a part of testing. On
the other hand, Uster Tester is a well established industrial
technique for measurement of yarn evenness and defects. We
expected a close agreement between measurements from both
methods, which is clearly not the case. However, this discre-
pancy cannot be verified in current study as Uster Tester does
not store images of yarn defects that could be directly com-
pared with the online evenness testing system. We do not in-
tend to undermine the accuracy of Uster Tester but the noted
discrepancy essentially requires further controlled investiga-
tions as these differences could be attributed to two entirely
different testing principles or a more complex issue, which
remains unclear at this point. Other than this difference, the
results achieved from imaging based evenness testing system
indicates that our proposed system could be effectively used
for online yarn testing and providing live insights into its qua-
lity for necessary process intervention and control, leading to
production of superior quality yarns.

5 Conclusions
• An online yarn evenness testing system based on a com-

bination of an image acquisition setup and Viola-Jones
object detection algorithm is successfully developed to
detect nep like defects during yarn production.



• The optimal quality online images of yarn could be ac-
quired using an ultra-low exposure time imaging system
combined with external illumination and suitable optical
configuration.

• Viola-Jones algorithm effectively detected nep like de-
fects in online yarn images with detection success rate
of 92%, which may improve further with refinement of
training strategy, size of training dataset or through ex-
perimenting with other object detection approaches to
improve detection success rate.

• The count of nep defects achieved by online yarn even-
ness testing system was substantially higher than Uster
Tester, although the trends of nep count were generally
similar i.e. higher number of neps for finer yarns and
vice versa.

• The substantial unexpected difference between nep
count reported by online system and Uster tester may
be attributed to two different testing principles but will
essentially benefit from further careful investigations.

• In the future, the online yarn evenness measurement sy-
stem can be used for detecting other types of yarn de-
fects as well with necessary additions in image proces-
sing module to produce a complete yarn quality testing
solution for wider yarn spinning industry.

6 Publications
The mentioned activities have been discussed in more depth
in the paper published in "Computers in Industry" [Haleem et
al., 2021].
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