
 

Abstract 

Modern electronic manufacturing production lines 
embed several processes including among these, 
the electric wafer testing phase (EWS i.e. Electrical 
Wafer Sorting). The EWS validation phase inclu-
des the execution of several electrical tests directly 
on the integrated circuits over the wafer. The elec-
trical assessment of EWS session can be reported 
in 2D binary map enabling the need to process the-
se digital maps properly. Specifically, from this in-
telligent EWS analysis it is possible to early-
identify defects in the production lines, electrical 
defects in the devices and finally,forecast proper 
wafer yield estimation. The detection and classifi-
cation of the patterns in the EWS maps is a very 
challenging and time-consuming task. In the con-
text of a joined research activity inside STMicroe-
lectronics in collaboration with University of Cata-
nia, ad-hoc deep learning solution has been deve-
loped in order to perform supervised/unsupervised 
EWS maps pattern recognition and tracking.  

1 Introduction 

The current global chip shortage brought manufactories to 
find solutions to improve the production yield of microelec-
tronic devices. The development of end-to-end machine 
learning pipelines daily scheduled in the production envi-
ronment enable experts to spot anomalies or patterns in the 
development product process. Specifically, the critical phase 
related to electrical validation of the wafer (EWS i.e. Elec-
trical Wafer Sorting), requires proper and experienced ef-
fort. More in detail, the analysis of the EWS image-map 
which embeds an imaging planar representation of the devi-
ces distribution over the wafer, needs a considerable effort. 
In this work, the authors refer to a EWS binary map i.e. a 
2D binary image which reports good and bad device-dies as 
outcome of electrical testing. More in detail, the EWS bina-
ry map report a “0” value to show a good die i.e. die which 
has passed all the scheduled electrical tests, while the value 
“1” is assigned to a bad device-die which has failed some of 
the performed electrical tests. 

 
The time-consuming analysis performed by experts (howe-
ver impacted by the subjective experience of the operator) 
for analyzing aforementioned EWS maps show such typical 
limits of a manually performed process with outcomes that 
often include errors, omissions or incorrect assessments. In 
the context of a research collaboration between the STMi-
croelectronics R&D Power and Discretes division and the 
PerCeiVe Lab of the University of Catania, the authors de-
veloped a deep learning algorithms for automatic/intelligent 
EWS map management applied to a specific automotive 
products based on classical silicon materials as well as on 
Silicon Carbide (SiC). Currently, Silicon Carbide (SiC) 
finds wide application in the semiconductor industry thanks 
to its electrical characteristics, which distinguish it from 
silicon for potential applications in high power, high fre-
quency and high temperature devices. Not surprisingly, this 
material finds its main application in the development of 
devices for the electric car. The current limit to its diffusion 
is given by the quality of the starting material or rather, of 
the substrates processed to arrive at the final device. Tech-
nological processes and wafer sizes related to SiC are there-
fore different from those based on classical silicon material. 
In this work we refer both to silicon and SiC wafers for au-
tomotive applications. 

2 EWS Testing: Description 

The work herein described has been tested on the following 
three datasets: WM811K, MixedWM38 and a dataset which 
contain internal STMicroelectronics EWS binary maps. 
• WM811K was created by Taiwan Semiconductor Manu-

facturing Company [Wu et al., 2015]: it contains about 
811,000 wafer maps and 9 patterns (Fig. 1). This dataset is 
unbalanced as it is based on RGB images of different reso-
lution showing an overexpressed class with 176,000 sam-
ples of “none” classified pattern; 
MixedWM38 [Wang et al., 2020] contains 38,015 EWS 
wafer maps showing 38 different patterns as combination 
of 9 base-patterns quite similar to the ones included in the 
WM811K dataset. Unlike the aforementioned dataset, the 
MixedWM38 dataset includes class-balanced 52x52 RGB 
images representing the main EWS patterns such as 
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“Near-full”, “Random”, “Center”, “Edge-Loc”,  “Scratch” 
and so on. 

• The EWS maps dataset created by STMicroelectronics 
which contains silicon and SiC EWS images showing se-
veral classic and custom patterns identified in the internal 
production lines. The dataset includes 61x61 RGB images 
for a total of 6,732 samples. Some instances on Fig. 1. 

Figure 1. STMicroelectronics EWS maps dataset 

We have trained and tested our depp algorithm development 
on the whole dataset which includes all the aforementioned 
dataset with a total of 70.266 images and 45 EWS pattern 
classes. The proposed deep learning algorithm embeds a 
supervised pipeline for labeled EWS map detection as well 
as unsupervised parallel pipeline for intelligent clustering of 
novel EWS patterns. 

3 EWS map intelligent management: Super-

vised pipeline 

The supervised EWS-map pattern recognition sub-system 
embeds ad-hoc designed deep convolutional network trained 
on the whole dataset (all the images have been converted to 
grayscale and resized to 61x61) using hold-out split (80 for 
training and 10/10 for testing and validation) [Kolesnikov et 
al., 2021]. In Fig. 2 we reported the overall scheme of the 
proposed supervised pipeline. The developed ad-hoc CNN 

has been compared with different backbones. We have also 
designed and tested a novel and customized viual-
transformer based architecture [Kolesnikov et al., 2021]. 
The experimental results  reported in Table 1 and 2 confir-
med the effectiveness of the implemented deep pipeline. 
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Figure 2. The proposed supervised EWS map classification deep 

pipeline 

 
 

Model Epoch Training Validation Test 

Deep CNN 67 0.9766 0.9643 0.9683 

 

Table 1: Supervised EWS map classification -Deep CNN- experi-

mental performance 

 
As showed in Table 2, Visual transformer (ViT) and the 
designed Deep CNN showed very interesting performance 
in the EWS pattern classification (in terms of F1-score in-
dex). The results outperformed the pipelines proposed in 
scientific literature and applied in the same dataset we used 
in this work [Wu et al., 2015; Wang et al., 2020;] 

Table 2: EWS-map classification experimental benchmark  

3.1 EWS map intelligent management: Unsuper-

vised pipeline 

Although the proposed supervised deep learning solution 
showed very interesting results, we decided to cover the 
scenario in which novel and not previously classified pat-
terns were showed in the analyzed EWS maps. Classical 
approaches proposed in scientific literature implemented 

 Deep CNN ViT 

Pattern F1-Score F1-score 

Near-full 0.96 0.97 

cluster_11 0.96 0.93 

cluster_23 0.99 0.95 

cluster_27 0.91 0.81 

cluster_38 1.00 1.00 

cluster_40 0.80 0.43 

cluster_44 0.99 0.99 

cluster_70 0.59 0.27 

   



Principal Component Analysis (PCA) and K-means based 
solutions. Anyway, both PCA and K-means methods con-
firmed low performance and reduced accuracy in that topic. 
In this context, the authors have proposed an innovative 
solution which uses custom and proprietary high-
dimensional connected graph for performing intelligent un-
supervised clustering of the input analyzed EWS map pat-
terns. We tested the implemented unsupervised solution in a 
dataset of 12.696 EWS binary 61x61 RGB maps without 
apriori classification. The performed clustering shows very 
interesting performance as confirmed in the applications of 
the algorithm in the STMicroelectronics product lines. A 
preliminary evaluation of the more predominant EWS pat-
terns translated into 3D surface plot is reported in Fig. 3. 
Some clustered EWS patterns related to SiC devices are 
reported in Fig. 4. 

 

4 Conclusion 

The usage of deep learning algorithms both supervised and 
unsupervised for EWS binary maps classification/clustering 
can be effective used to help manufacturing to improve the 
production yield. By means of an accurate control of the 
indicative EWS patterns of defects or anomalies in the pro-
duction lines and of the correlations with the yield, it is pos-
sible to monitor the production processes for both silicon 
and SiC devices. As part of a research framework agreement 
between STMicroelectronics and the University of Catania, 
further developments of innovative solutions are underway 
for the realization of the so-called smart intelligent factory 
mainly related to automotive deliverables. 
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Figure 4. Clustering results over internal STMicroelectronics SiC 

Dataset 

 

 

Figure 23. 3D rendering of SiC wafer maps 


