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Abstract
Anomaly detection systems have great potential for
preventing energy waste in office and residential
buildings. Avoiding such waste translates not only
in savings and higher levels of comfort for inhabi-
tants, but also plays a big role in the protection of
the environment. In this report, we present some
preliminary results of the application of several AI-
based methods to the detection of anomalies in data
on electricity consumption collected in two office
buildings.

1 Introduction
Massive amounts of operational data relative to buildings are
being collected and available for data analysis. It is therefo-
re very promising to develop data-driven approaches to ob-
tain insights and actionable knowledge to better manage buil-
dings. Forecasting future consumptions and detecting anoma-
lies on energy usage are two of the most common examples
of analyses that can be performed [Bolchini et al., 2017]. In
this report we focus on anomaly detection in electrical energy
consumption of buildings.

Several challenges must be faced when developing data-
driven models of the behavior of buildings from an electrical
energy consumption standpoint. For instance, energy con-
sumption depends on many factors whose dynamics are of-
ten interrelated in non-trivial ways. An example is the tem-
perature regulation through internal heating, ventilation, and
air conditioning systems (HVACs), to maintain high comfort
levels for those living or working inside the building.

By exploiting anomaly detection systems for energy con-
sumption, building managers could easily be notified about
internal problems and promptly act to solve them. The po-
tential impact of adopting such solutions is not just in the de-
crease of the costs and the increase of inhabitants’ comfort,
but it is also on the environment. The prevention of unne-
cessary energy waste in buildings could play a big role in the
urgently needed reduction of world-wide power consumption
to alleviate the burden on both power grids and emission of
greenhouse gasses1. In this report, we present some prelimi-
nary results on the detection of anomalies in electrical ener-

1https://ec.europa.eu/energy/eu-buildings-factsheets_en

gy consumption we obtained in applying AI methods to data
coming from two office buildings.

2 Related Work
Anomaly detection [Chandola et al., 2009] is the task of fin-
ding patterns in data that do not conform to the expected be-
havior. Anomaly detection has been a field of interest both
within academia and industry for a very long time, suffice to
say that the first works in this direction date back to as early
as the late XIX Century [Edgeworth, 1887]. The importance
of anomaly detection is rooted in the fact that detected ano-
malies can lead to significant and often critical insights that
can be exploited in a wide variety of application areas. The
application domains to which anomaly detection has been ap-
plied over the years are very varied and include credit card
or insurance fraud [Raj e Portia, 2011], healthcare [Este-
va et al., 2017], cyber-physical systems [Goh et al., 2017],
surveillance [Nawaratne et al., 2019], intrusion detection in
computer networks [Mukherjee et al., 1994] and many others
[Chandola et al., 2009; Ruff et al., 2021; Pang et al., 2021;
Chalapathy e Chawla, 2019; Blázquez-García et al., 2021].

Time series anomaly detection is the highly related to the
problem considered here. A time series consists in a sequen-
ce of observations that have been recorded in an orderly fa-
shion and that are correlated in time [Hamilton, 1994]. Ap-
proaches to detect anomalies in time series can be broadly
categorized according to type of time series they are able to
deal with [Blázquez-García et al., 2021]. Univariate time se-
ries are ordered sequences of real-valued observations, while
multivariate time series can be thought as ordered sets of k-
dimensional vectors, where k is the number of observations
available at each timestamp. Multivariate approaches repre-
sent a more powerful tool as they can model also the fact that
each variable could depend not only on its past values but al-
so on the other variables (both at the current time as well as
in the past).

Examples of recent anomaly detectors for electricity con-
sumption data are [Fan et al., 2018; Pereira e Silveira, 2018;
Chou e Telaga, 2014; Araya et al., 2017]

3 Method
Recently, deep learning models have been employed to re-
address several data-related tasks, including those relative to
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Figura 1: Dutch dataset.
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Figura 2: Italian dataset (just lighting consumption for the year 2018 is shown).
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Figura 3: Italian dataset (just HVAC consumption for the year 2018 is shown).

electricity consumption anomaly detection [Fan et al., 2018;
Pereira e Silveira, 2018], providing significant improvemen-
ts over classical state-of-the-art methods [Ruff et al., 2021;
Pang et al., 2021; Chalapathy e Chawla, 2019]. In this report
we focus on autoencoders.

Autoencoders (AEs) [Hinton e Salakhutdinov, 2006] are
particular kinds of artificial neural networks which are trained
to reconstruct their input, in a self-supervised manner. An AE
is composed of an encoder network and a decoder network.
The encoder takes as input the training data x ∈ Rd, whe-
re d is the dimension of the data, and compresses these data
into a latent space z ∈ Rh, where h is the dimension of the
encoding, usually h < d. Then, the decoder tries to map
back the latent internal representation z to the original input
space x̂ ∈ Rd, through reconstruction. The encoder structu-
re can be considered as a bottleneck, in which data pass and
are compressed to extract a meaningful encoded representa-
tion. The decoder does the opposite. The two networks are
characterized by fφ, the encoding function, and fθ, the de-
coding function, where fφ : Rd → Rh and fθ : Rh → Rd.
Finding weights (parameters) φ and θ for the two functions
can be done by backpropagation, minimizing the loss func-

tion LAE (x, x̂) = ‖ x− x̂ ‖2, called reconstruction error,
given input x and model output x̂.

The main idea behind the current use of AEs for anoma-
ly detection is to train them only on nominal data (following
a semi-supervised approach) so that they will not be able to
accurately reconstruct anomalous behaviors (that the AEs ha-
ve never seen), which will thus produce high reconstruction
errors.

We test different AE architectures, including Variational
AutoEncoders (VAEs) [Kingma e Welling, 2014], and dif-
ferent combinations of convolutional and recurrent layers
[Goodfellow et al., 2016].

4 Experimental Results
We perform experiments on two datasets collected from office
buildings (that typically are inhabited only during working
hours).

The first dataset contains electrical power consumption da-
ta of a research facility in the Netherlands over the year 1997,
with a granularity of 15 minutes.

The second dataset contains electrical power consumption
data of an office building in Italy over a period of three years,



with a granularity of 15 minutes. Being a rather big building,
it is equipped with several smart circuit breakers that collect
information regarding parking lighting, electric vehicle char-
ging stations, offices’ lighting and power outlets, HVAC sy-
stems, elevators, kitchens, and cafeteria’s refrigerators. For
this building, also the outside temperature and humidity are
collected, which represent valuable information as their cor-
relation to electricity consumption has been studied extensi-
vely [Hor et al., 2005]. Hence, this Italian dataset, unlike the
Dutch one, is multivariate.

Figure 1 depicts the Dutch dataset, while Figures 2 and 3
display consumptions due to lighting and HAVC of the Ita-
lian dataset for the year 2018, respectively. A clear weekly
seasonality can be observed in both datasets in the form of hi-
gh consumptions during working hours on weekdays and low
consumptions otherwise (easily observable in the plots whe-
re five peaks are followed by two days of low consumptions,
i.e., weekends). In the Italian dataset, additionally, a yearly
seasonality can be observed, which is different for the two
series depicted. In Figure 2, it can be seen as consumption
due to lighting increases during Winter as a consequence of
the reduction of daylight hours, while, in Figure 3, which de-
picts HVAC consumption, the yearly seasonality is high both
during Winter (when offices need to be heated) and Summer
(when offices need to be cooled).

An electricity demand anomaly detector is hence a sy-
stems (algorithm) that need to be able to model multiple
seasonalities and correlations among different dimensions.

Examples of anomalies we detect are the breaking of the
weekly seasonality (e.g., during holidays) or abrupt spikes.
Figure 4 contains examples of such anomalies.

Figura 4: Anomalies on the Italian dataset. The All Saints’ holiday
(November 1), on the left. Abrupt spike (on Friday), on the right.

Among the various AEs architectures tested, we have noti-
ced that more complex ones (especially those comprising re-
current layers) do not necessarily imply better detection per-
formances. We suspect bigger datasets are needed to exploit
the full potential of these models.

5 Conclusion
We have presented some preliminary results regarding the de-
tection of anomalies in electrical energy consumption of two
office buildings. Our results suggest that AEs represent a po-
werful tool for detecting anomalies in electricity demand time
series.
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