
Digital Twins Composition via Markov Decision Processes

Giuseppe De Giacomo, Marco Favorito, Francesco Leotta, Massimo Mecella, Luciana Silo
Department of Computer, Control and Management Engineering,

Sapienza, University of Rome,
Via Ariosto, 25, 00185 Rome RM, Italy

{degiacomo,favorito,leotta,mecella,silo}@diag.uniroma1.it

• Unità Lab AIIS:
Sapienza Università di Roma

• Titolo del contributo:
Digital Twins Composition
via Markov Decision Processess

• Persone coinvolte:
Giuseppe De Giacomo
Marco Favorito
Francesco Leotta
Massimo Mecella
Luciana Silo

• Temi di ricerca:
Artificial Intelligence
Planning and Program Synthesis
Reasoning under Uncertainty
Reinforcement Learning
Smart Manufacturing
Digital Twins

• Progetti:
ERC Advanced WhiteMech <https://whitemech.github.io>
EU ICT-48 TAILOR <https://tailor-network.eu>
EU DESTINI <https://destini2020.eu>
EU FIRST <https://www.h2020first.eu>

• Applicazioni in sviluppo/sviluppate/operative:
Smart Manufacturing
Digital Twins

• Challenges/prospettive:
See the main text

• Riferimenti a paper e risorse su web:
See the main text

Abstract
The project we are going to exhibit is: Digital
Twins Composition via Markov Decision Proces-
ses. The research group, which deals with Industry
4.0 through AI methods, worked on this project at
the Sapienza University. Our research project focu-
ses on the application of service composition tech-
niques for Smart Manufacturing and IoT, conside-
ring Digital Twins as services to be orchestrated to
implement complex industrial processes. In parti-
cular, we enrich the robustness of these processes
through AI techniques such as Markov Decision
Processes.

1 Introduction
In recent years we have been witnessing the continuous evo-
lution of technologies in the fields of communication, networ-
king, storage and computing, applied to the more traditional
world of industrial automation. In order to increase produc-
tivity and quality, to ease workers’ lives, and to define new
business opportunities, smart manufacturing has emerged as
the core of the Industry 4.0 revolution. DTs are up-to-date
digital descriptions of physical objects and their operating
status. Modern information systems and industrial machines
may natively come out with their digital twin; in other cases,
especially when the approach is applied to already established
factories and production processes, digital twins are obtained
by wrapping actors that are already in place. The main goal is
to establish a tight integration between the physical world and
the virtual world, in order to make production more efficient,
reliable, flexible and faster. DTs are ideal tools to accomplish
the purposes of Industry 4.0, since they enable a massive ex-
change of data that can be interpreted by analytical tools, in
order to improve decision making.

Inspired by the research about automatic orchestration and
composition of software artifacts, such as Web services, in
[Catarci et al., 2019] it has been argued that an important
step towards the development of new automation techniques
in smart manufacturing is the modeling of DT services and
data as software artifacts, and that the principles and techni-
ques for composition of artifacts in the digital world can be
leveraged to improve automation in the physical one. In par-
ticular, starting from the Roman model for service composi-
tion [Berardi et al., 2005], they consider smart manufacturing
scenarios where DTs of physical systems provide stateful ser-
vices wrapping the functionalities of machines and tasks of
human operators.

Nevertheless, the proposed approach, suffer of an inherent
limitation of the classical Roman model, which requires that
the available services, i.e., the services that can be used to
realize the target service, behave deterministically. This as-
sumption is often unrealistic, because in practice the underly-
ing physical system modeled as a set of services might show
a non-deterministic behavior due to the complexity of the do-
main, or due to an inherent uncertainty on the dynamics of
such system.

Moreover, the above-mentioned techniques work only
when the target is fully realizable, i.e., the specification can

https://whitemech.github.io
https://tailor-network.eu
https://destini2020.eu
https://www.h2020first.eu

either be satisfied or not, with no middle ground. In the con-
text of Industry 4.0 this might be seldom the case, and instead
it would be preferred a technique that, rather than returning
no answer, returns the “best-possible” solution under the ac-
tual circumstances. The work [Brafman et al., 2017] con-
tributes to this direction by providing a solution technique,
based on Markov Decision Processes (MDPs) that coincides
with the exact solution if a composition exists; otherwise, it
provides an approximate solution that maximizes the expec-
ted sum of values of the target service’s requests. Unfortu-
nately, such model is not expressive enough to capture the
non-determinsitic behaviour of the available services which,
as argued above, is a must-have in our setting.

In our work, we marry the vision of employing service
composition techniques to orchestrate digital twins. We pro-
pose a generalization to the service composition in stochastic
setting proposed in [Brafman et al., 2017], in which not only
the target but also the services are allowed to behave stocha-
stically. Moreover, we allow the services to be taken into
account in the optimization problem by associating a reward
to each service’s transition, besides the target’s rewards.

2 Preliminaries results
Before stating the problem, we give preliminary definitions.

2.1 Background
MDPs. A Markov Decision Process (MDP) M =
⟨S,A, T,R⟩ contains a set S of states, a set A of actions, a
transition function T : S × A → Prob(S) that returns for
every state s and action a a distribution over the next state,
and a reward function R : S × A → R that specifies the
reward (a real value) received by the agent when transitio-
ning from state s to state s′ by applying action a. A solution
to an MDP is a function, called a policy, assigning an action
to each state, possibly with a dependency on past states and
actions. The value of a policy ρ at state s, denoted vρ(s), is
the expected sum of (possibly discounted by a factor λ, with
0 ≤ λ < 1) rewards when starting at state s and selecting ac-
tions based on ρ. Typically, the MDP is assumed to start in an
initial state s0, so policy optimality is evaluated w.r.t. vρ(s0).
Every MDP has an optimal policy ρ∗. In discounted cumula-
tive settings, there exists an optimal policy that is Markovian
ρ : S → A, i.e., ρ depends only on the current state, and de-
terministic [Puterman, 1994]. Among techniques for finding
an optimal policy of an MDP, there are value iteration and
policy iteration [Sutton e Barto, 2018].
The Roman Model in stochastic settings. The problem of
service composition, i.e. the ability to generate new, mo-
re useful services from existing ones, has been considered
in the literature for over a decade [Hull, 2008; Medjahed
e Bouguettaya, 2011; De Giacomo et al., 2014]. The goal
is, given a specification of the behavior of the target ser-
vice, to build a controller, known as an orchestrator, that
uses existing services to satisfy the requirements of the tar-
get service. Here we concentrate on the approach known
in literature as the “Roman model" [Berardi et al., 2003;
Berardi et al., 2005]: each available service is modeled as
a finite-state machines (FSM), in which at each state, the ser-
vice offers a certain set of actions, where each action changes

the state of the service in some way. The designer is interested
in generating a new service (referred to as target) from the set
of existing services. The required service (the requirement)
is specified using a FSM, too.

Unfortunately, it is not always possible to synthesize a ser-
vice that fully conforms with the requirement specification.
This zero-one situation, where we can either synthesize a
perfect solution or fail, often is not very applicable. Rather
than returning no answer, we may want notion of the “best-
possible" solution. A model with this notion has been develo-
ped in [Brafman et al., 2017], where the authors discuss and
elaborate upon a probabilistic model for the service compo-
sition problem, first presented in [Yadav e Sardina, 2011]. In
this model, an optimal solution can be found by solving an ap-
propriate probabilistic planning problem (e.g. an MDP) deri-
ved from the services and requirement specifications. Due to
lack of space, we do not report the details of such technique.

2.2 Problem
A stochastic service is a tuple S̃ = ⟨Σs, σs0, Fs, A, Ps, Rs⟩,
where Σs is the finite set of service states, σs0 ∈ Σ is the ini-
tial state, Fs ⊆ Σs is the set of the service’s final state, A is
the finite set of services’ actions, Ps : Σs × A → Prob(Σs)
is the transition function, and Rs : Σs×A → R is the reward
function. In short words, the stochastic service is the sto-
chastic variant of the service defined in the classical Roman
model, and it can be seen as an MDP itself.

A target service, as defined in [Brafman et al., 2017], is
T = ⟨Σt, σt0, Ft, A, δt, Pt, Rt⟩, where Σt is the finite set of
service states, σt0 ∈ Σ is the initial state, Ft ⊆ Σ is the
set of the service’s final state, A is the finite set of services’
actions, δt : Σ × A → Σ is the service’s deterministic and
partial transition function, Pt : Σt → π(A) ∪ ∅ is the action
distribution function, Rt : Σt×A → R is the reward function.

A stochastic system service Z̃ of a community of stochastic
services C̃ = {S̃1, . . . , S̃n} is a stochastic service where Z̃ =
⟨Σz, σz0, Fz, A, Pz, Rz⟩ are defined as follows: Σz = Σ1 ×
· · · × Σn, σz0 = (σ10, . . . , σn0), Fz = {(σ1, . . . , σn) | σi ∈
Fi, 1 ≤ i ≤ n}, Az = A× {1, . . . n} is the set of pairs (a, i)
formed by a shared action a and the index i of the service
that executes it, Pz(σ

′ | σ, (a, i)) = P (σ′
i | σi, a), for σ =

(σ1 . . . σn), σ′ = (σ′
1 . . . σ

′
n) and a ∈ Ai(σi), with σi ∈ Σi

and σj = σ′
j for j ̸= i, Rz(σ, (a, i)) = Ri(σi, a) for σ ∈ Σz ,

a ∈ Ai(σi).
We define the set of joint histories of the target and the

system service as Ht,z = Σt × Σz × (A × Σt × Σz)
∗. A

joint history ht,z = σt,0σz,0a1σt,1σz,1a2 . . . is an element
of Ht,z . The projection of ht,z over the target (system) ac-
tions is πt(ht,z) = ht (πz(ht,z) = hz). An orchestrator
γ : Σt × Σz × A → {1, . . . , n}, is a mapping from a sta-
te of the target-system service and user action (σt, σz, a) ∈
Σt × Σz × A to the index j ∈ {1, . . . , n} of the service that
must handle it. Crucially, since the stochasticity comes also
from the services, the orchestrator does affect the probabili-
ty of an history ht,z . Moreover, in general, there are several
system histories associated to a given target history.

Let Pγ(h) =
∏|h|

i=0 Pt

(
σt,i, ai+1

)
Pz

(
σz,i+1 |

σz,i, ⟨ai+1, γ(σt,i, σz,i, ai+1)⟩)
)

be the probability of a

(joint) history h = σt0σz0⟨a1, j1⟩σt1σz1⟨a2, j2⟩ . . . under
orchestrator γ. Intuitively, at every step, we take into
account the probability, determined by Pt, that the user
does action ai+1 in the target state σt,i, in conjunction with
the probability, determined by Pz , that the system service

does the transition σz,i
(ai+1,j)−−−−−→ σ′

z,i+1, where j is the
choice of the orchestrator at step i under orchestrator γ, i.e.
j = γ(σt,i, σz,i, ai+1).

The value of a joint history under orchestrator γ is
the sum of discounted rewards, both from the target and

the system services: vγ(h) =
|h|∑
i=0

λi

(
Rt

(
σt,i, ai+1

)
+

Rz

(
σz,i, ⟨ai+1, γ(σt,i, σz,i, ai+1)⟩)

))
Intuitively, we take into account both the reward that co-

mes from the execution of action ai+1 in the target ser-
vice, but also the reward associated to the execution of
that action in service j chosen by orchestrator γ. Now
we can define the expected value of an orchestrator to be:
v(γ) = Eht,z∼Pγ

[
vγ(ht,z) · realizable(γ, πt(ht,z))

]
where

realizable(γ, πt(ht,z)) is 1 if ht = πt(ht,z) is realizable in γ
(i.e. all the possible target histories are processed correctly),
and 0 otherwise. That is, v(γ) is the expected value of histo-
ries realizable in γ. Finally, we define an optimal orchestrator
to be γ = argmaxγ′ v(γ′).

It can be shown that, under certain assumptions (i.e. tar-
get is realizable, every history has strictly positive value,
and the target’s rewards are always greater than services’
rewards), optimality of the orchestrator implies that the target
is realized by the orchestrator.

2.3 Solution technique

The solution technique is based on finding an optimal
policy for the composition MDP. The composition MDP
is a function of the system service and the target service
as follows: M̃(Z̃, T̃) = ⟨SM̃, AM̃, TM̃, RM̃⟩, where
SM̃ = ΣZ̃ × ΣT̃ × A ∪ {sM0}, AM̃ = {aM0, 1, . . . , n},
TM̃(sM0, aM0, (σz0, σt0, a)) = Pt(σt0, a),
TM̃((σz, σt, a), i, (σ

′
z, σ

′
t, a

′)) = Pt(σ
′
t, a

′) · Pz(σ
′
z |

σz, ⟨a, i⟩), if Pz(σ
′
z | σz, ⟨a, i⟩) > 0 and σt

a−→ σ′
t and 0

otherwise, RM̃((σz, σt, a), i) = Rt(σt, a) + Rz(σz, ⟨a, i⟩),
if (a, i) ∈ A(σz) and 0 otherwise.

This definition is pretty similar to the construction propo-
sed in [Brafman et al., 2017], with the difference that now,
in the transition function, we need to take into account also
the probability of transitioning to the system successor sta-
te σ′

z from σz doing the system action ⟨a, i⟩, i.e. Pz(σ
′
z |

σz, ⟨a, i⟩). Moreover, in the reward function, we need to take
into account also the reward observed from doing system ac-
tion ⟨a, i⟩ in σz , and sum it to the reward signal coming from
the target. By construction, if ρ is an optimal policy, then
the orchestrator γ such that γ(σz, σt, a) = ρ(⟨σz, σt, a⟩ is an
optimal orchestrator.

To summarize, given the specifications of the set of stocha-
stic services and the target service, first compute the compo-
sition MDP, then find an optimal policy for it, and then deploy

the policy in an orchestration setting and dispatch the request
to the chosen service according to the computed policy,

2.4 Use case
The scenario proposed is the following: there is an indu-
strial process of ceramics production in which a product must
be processed sequentially in different ways. Each sub-task
can be completed by a set of available services. The tasks
to be carried out in order to complete the industrial process
are: provisioning, moulding, drying, first baking, enamelling,
painting, second baking and shipping. Such tasks can be ac-
complished by different types of machines or human workers.
Each available service that can perform the task can be seen
as finite state machines with a probability and a reward as-
sociated to each action. There could be multiple services for
the same task, e.g. multiple version of a machine (new one
and old one) and a human that can perform the task required,
and so on. When an available service is being assigned a ta-
sk, this has a task cost in terms of time taken and resources
needed for the completion of the operation on that specific
service. Usually, in terms of task cost, machines are chea-
per than human workers, because they can perform their task
much faster. However, the machines have a certain proba-
bility to break when they perform their job. In such a case,
the machine must be repaired as soon as the operation has
been carried out, that incurs in a repair cost for that specific
machine.

From the above description of the use case scenario, it is
clear that the composition technique must be able to hand-
le the stochasticity of the available services’ transitions, as
well as their reward/cost. Indeed, an optimal orchestration
depends on several parameters, like the task costs, the brea-
king probabilities and the repair costs, one for each candida-
te service for accomplish a certain task. Therefore, it is not
straightforward to determine a priori which service a certain
task must be assigned to. For example, it might be the ca-
se that despite the task cost of a machine is low, its breaking
probability might be high, and considering the repair cost it
might let us to prefer a human worker for that task. We argue
that our model can fit very well our use case. Indeed, we can
reduce the problem to an instance of stochastic service com-
position suggested above in which a service can capture the
task cost, the breaking probability, and the repair cost.

3 Conclusion
In this work we have proposed a stochastic service composi-
tion, in which also the services are allowed to have stochastic
behaviour and rewards on the state transitions. We formally
specified the problem and proposed a solution based on a re-
duction to MDPs, showing how it is well-suited for a realistic
Industry 4.0 scenario.

Besides the development of this work we considered seve-
ral future research directions, aiming to enrich the theoretical
framework with interesting features such as: exception hand-
ling, modularity of the target specification, high-level speci-
fication of the target service based on temporal logic formali-
sms, possibility to specify safety constraints. Moreover, other
interesting directions to explore are the integration with lear-

ning techniques in order to achieve greater scalability and in-
vestigation on how to achieve the resilience of the system.
The expected theoretical contributions from this project are
potentially impacting many other research areas. The reason
is that the service composition models and techniques have
different application areas, e.g. Web Service composition,
and the theoretical advances are virtually applicable without
much effort in other contexts that the service composition fits
in. We aim to unlock the full potential of Digital Twins, and
letting businesses take advantage of the new trends in AI and
enabling technologies to achieve more significant productivi-
ty goals, improving the efficiency and the sustainability of the
production processes.

Riferimenti bibliografici
[Berardi et al., 2003] Daniela Berardi, Diego Calvanese,

Giuseppe De Giacomo, Maurizio Lenzerini, e Massi-
mo Mecella. Automatic composition of e-services that
export their behavior. In International conference on
service-oriented computing, pages 43–58. Springer, 2003.

[Berardi et al., 2005] Daniela Berardi, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, e Massimo
Mecella. Automatic service composition based on beha-
vioral descriptions. International Journal of Cooperative
Information Systems, 14(04):333–376, 2005.

[Brafman et al., 2017] Ronen I Brafman, Giuseppe De Gia-
como, Massimo Mecella, e Sebastian Sardina. Servi-
ce composition in stochastic settings. In Conference of
the Italian Association for Artificial Intelligence, pages
159–171. Springer, 2017.

[Catarci et al., 2019] Tiziana Catarci, Donatella Firmani,
Francesco Leotta, Federica Mandreoli, Massimo Mecel-
la, e Francesco Sapio. A conceptual architecture and mo-
del for smart manufacturing relying on service-based digi-
tal twins. In 2019 IEEE international conference on web
services (ICWS), pages 229–236. IEEE, 2019.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Massimo
Mecella, e Fabio Patrizi. Automated service composition
based on behaviors: The roman model. In Web services
foundations. 2014.

[Hull, 2008] Richard Hull. Artifact-centric business process
models: Brief survey of research results and challenges.
In OTM Confederated International Conferences, pages
1152–1163. Springer, 2008.

[Medjahed e Bouguettaya, 2011] Brahim Medjahed e Ath-
man Bouguettaya. Service composition for the Semantic
Web. 2011.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes. 1994.

[Sutton e Barto, 2018] Richard S Sutton e Andrew G Barto.
Reinforcement learning: An introduction. 2018.

[Yadav e Sardina, 2011] Nitin Yadav e Sebastian Sardina.
Decision theoretic behavior composition. In AAMAS,
2011.

	Introduction
	Preliminaries results
	Background
	Problem
	Solution technique
	Use case

	Conclusion

