
Automating Industrial Visual Inspection Systems
with Deep Reconstruction-based Anomaly Detection

Pietro Buzzega1, Cynthia I. Ugwu2, Alberto Cenzato1, Massimo Regoli1,
Franz Tschimben1, Marco Boschetti1, Oswald Lanz1,2

1 Covision Lab, Bressanone-Brixen, Italy
2 Free University of Bozen-Bolzano

name.surname@covisionlab.com
https://www.covisionlab.com

Abstract

The increasing longing to optimize manufactur-
ing procedures led us throughout industrial rev-
olutions, increasing consumers’ expectations and
consequently creating the suppliers’ need to fulfill
them. Quality control represents a crucial part of
automatic production processes nowadays; the bet-
ter the quality, the less need for human interven-
tion. In this work, we present our approach to au-
tomate visual inspection systems: leveraging state-
of-the-art reconstruction-based anomaly detection
approaches, we aim at finding defects in an unsu-
pervised manner, avoiding time-consuming manual
or automatic labeling techniques.

1 Introduction
Human labeling still plays a fundamental role in the indus-
try. Despite automatic vision systems having been at disposal
for more than 30 years, it is not uncommon to see operators
discriminating between good and defective parts right next to
the production line. These human experts are valuable to the
company and sometimes unique: since the market demand
decides the number of manufactured pieces, managing work
shifts is not always straightforward. Moreover, even when
setting up automated systems becomes compelling, the lat-
ter’s need for labeled data makes human knowledge essential.

While labeling is expensive and time-consuming, acquir-
ing data is not a big deal. On the one hand, most compa-
nies already have a vision system capable of capturing ob-
jects passing through; on the other hand, configuring one just
for taking pictures does not represent a challenge. Given the
vast amount of unlabeled data available, unsupervised learn-
ing appears to be the easiest way out.

Fortunately, no self-respecting production line would yield
a considerable amount of scrap; therefore, we can assume
that most of the images depict OK pieces. If we can fit that
unlabeled set of data, we may be sure that we learned the non-
defective distribution: any part that does not conform would
be discarded. This concept perfectly blends with the task of
anomaly detection: if we can find anomalies, we may find
defects.

2 Anomaly detection
Anomaly detection, also called outliers or novelty detection,
aims at identifying anomalous patterns that are different from
those seen in regular instances. For example, in computer vi-
sion applications such as defect detection, an anomaly is any
image or image portion which exhibits significant variation
from the predefined characteristics of normality [Mishra et
al., 2021]. Other critical machine learning applications rely
on anomaly detection: fraudulent financial transactions, med-
ical image analysis, and video surveillance, to name a few.
For such tasks, it is difficult and expensive to collect abnormal
data [Kimura and Yanagihara, 2019], leading the majority of
research efforts to focus on unsupervised and self-supervised
anomaly detection that employ normal data only.

2.1 Related work
One-Class Classification (OCC) is broadly used for unsu-
pervised anomaly detection. It branches out in kernel-based
methods like One-Class SVM (OC-SVM) [Schölkopf et al.,
1999] and boundary methods such as Support Vector Data
Description (SVDD) [Tax and Duin, 2004]. However, these
fail with high-dimensional data due to the curse of dimension-
ality [Ruff et al., 2018], while deep-learning-based methods
like [Oza and Patel, 2019; Ruff et al., 2018] exploit that high-
dimensionality by capturing more complex features: the latter
guarantees them a substantial performance gap.

Sticking to the unsupervised paradigm, reconstruction-
based models such as autoencoders [Rumelhart et al., 1985],
generative adversarial networks [Perera et al., 2019], or trans-
formers [Mishra et al., 2021] can be trained to reconstruct or
generate normal data, also modeling the learned latent space
using a target distribution.

Moving on to self-supervised learning, instead, deep neu-
ral networks can be used to solve pretext tasks like predict-
ing geometric transformation, performing contrastive learn-
ing [Sohn et al., 2021] or clustering [Caron et al., 2018]. This
way, the network learns high-level semantic features, useful
for detecting anomalies.

Due to its simplicity and reliable performance, we adopt
a reconstruction-based approach. Specifically, we recon-
struct images with a convolutional Denoising AutoEncoder
(DAE) [Vincent et al., 2008].

https://www.covisionlab.com


3 System architecture and workflow
Acquiring images serves as the first step of our workflow.
A proper acquisition system would be repeatable, produc-
ing pictures whose basic statistics do not change over time
or place. As mentioned above, most industrial plants already
dispose of a reliable acquisition system: if this were not the
case, its implementation would not be a technical or scientific
challenge; we thus give that for granted in this work.

3.1 Preprocessing
Subsequently, we should ask ourselves whether the examined
part is rigid or can change shape. The answer would deter-
mine whether a registration1 phase could be advantageous.
When the object at issue does not exhibit any change in its sil-
houette, aligning pictures typically lowers the pixel-wise vari-
ability of the dataset exceptionally. Also, it allows to easily
segment out the background, as pieces always hold the same
position. The two latter points heavily simplify the learning
stage: a shallower network on a registered dataset could per-
form as a deeper network on a non-registered one; at times,
this is fundamental for the learning to happen. Our use-cases
usually provide for the production of metal parts; hence, we
rely on Generalized Hough Transform [Hough, 1962] to align
images.

3.2 Model
The core of our architecture consists of a denoising autoen-
coder network. To generalize fast to new images, which could
vary in quality and resolution, we designed a network archi-
tecture based on the ResidualBlock [He et al., 2016] that
adapts automatically to different input shapes. The training
phase of a DAE involves adding a certain amount of noise
(Gaussian noise, in our case) to each image and feeding the
result to the network; the latter yields another image with the
same shape of the input. We optimize our objective – mini-
mizing the Mean Squared Error between input and output –
via a gradient descent optimizer. After proper training, the
network can reconstruct the input almost correctly. However,
since the information needs to flow throughout the bottleneck,
which is much smaller than the image, less frequent features
are left out; as a result, anomalies cannot be reconstructed.
The higher the pixel-wise difference between input and out-
put for a given patch, the likelier that patch is anomalous.

3.3 Classification
The difference between input and output (i.e. heatmap) links
each pixel with an anomaly score. The most common tech-
nique to provide a score for each image is summing all the
anomaly scores for each pixel. However, in production envi-
ronments, this does not suffice. We eventually need a binary
decision: any piece that exceeds a threshold (usually chosen
as the best for the validation set) is considered anomalous.

While this simple rule works if all anomalies are also de-
fects, this is not always the case. For instance, we could
mistake light change, noise, or dirt for defects; for this rea-
son, we might need a final classification phase that takes
heatmaps as input and outputs binary decisions. Assuming

1Alignment of different pictures depicting the same piece.

we could have access to a small amount of labeled data, we
make use of either a pre-trained network or Hu moment in-
variants [Hu, 1962] to extract meaningful features from the
heatmaps. Then, we exploit the latter to train a Multilayer
Perceptron in a supervised manner and use it as the final clas-
sifier.

4 Deployment
While we write Python programs for everything linked to
neural network and algorithm development, the adoption of
C++ for our deployment application makes it more perform-
ing and reliable. Thanks to ONNX [ONNX, ] and the re-
lated run-time environment powered by Nvidia, models from
Pytorch [Paszke et al., 2019] or TensorFlow [Abadi et al.,
2015] can be easily exported and stored. ONNX files act as
the interface between research and deployment: the Nvidia
TensorRT framework loads and optimizes the real-time per-
formance of our deep models.

Monitoring production statistics continuously plays a valu-
able role in the quality control process: detecting problems
as soon as they appear delivers an immeasurable value for the
client. To this end, we perform anomaly detection on the met-
rics produced by our system and notify any deviation from the
usual behavior.

5 Conclusions and future work
Field testing our system confirmed us its valuable perfor-
mance and generalization capabilities. However, discrimi-
nating anomalies from defects is not always easy and still
requires a small amount of supervision. In the future, we
will explore different architectures and algorithms to reduce
the error rate, simultaneously reducing human intervention as
much as possible.

References
[Abadi et al., 2015] Martín Abadi, Ashish Agarwal, Paul

Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[Caron et al., 2018] Mathilde Caron, Piotr Bojanowski, Ar-
mand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss,
editors, Computer Vision – ECCV 2018, pages 139–156,
Cham, 2018. Springer International Publishing.



[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hough, 1962] Paul VC Hough. Method and means for rec-
ognizing complex patterns, December 18 1962. US Patent
3,069,654.

[Hu, 1962] Ming-Kuei Hu. Visual pattern recognition by
moment invariants. IRE transactions on information the-
ory, 8(2):179–187, 1962.

[Kimura and Yanagihara, 2019] Masanari Kimura and
Takashi Yanagihara. Anomaly detection using gans for
visual inspection in noisy training data. In Gustavo
Carneiro and Shaodi You, editors, Computer Vision –
ACCV 2018 Workshops, pages 373–385, Cham, 2019.
Springer International Publishing.

[Mishra et al., 2021] Pankaj Mishra, Riccardo Verk, Daniele
Fornasier, Claudio Piciarelli, and Gian Luca Foresti. Vt-
adl: A vision transformer network for image anomaly de-
tection and localization. 2021 IEEE 30th International
Symposium on Industrial Electronics (ISIE), Jun 2021.

[ONNX, ] ONNX. Onnx, the open neural network exchange
(onnx) is an open-source artificial intelligence ecosystem.
http://https://onnx.ai.

[Oza and Patel, 2019] Poojan Oza and Vishal M. Patel. One-
class convolutional neural network. IEEE Signal Process-
ing Letters, 26(2):277–281, Feb 2019.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[Perera et al., 2019] Pramuditha Perera, Ramesh Nallapati,
and Bing Xiang. Ocgan: One-class novelty detection using
gans with constrained latent representations, 2019.

[Ruff et al., 2018] Lukas Ruff, Robert Vandermeulen, Nico
Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep
one-class classification. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 4393–4402.
PMLR, 10–15 Jul 2018.

[Rumelhart et al., 1985] David E Rumelhart, Geoffrey E
Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. Technical report, Califor-
nia Univ San Diego La Jolla Inst for Cognitive Science,
1985.

[Schölkopf et al., 1999] Bernhard Schölkopf, Robert
Williamson, Alex Smola, John Shawe-Taylor, and John
Platt. Support vector method for novelty detection. In
Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, page
582–588, Cambridge, MA, USA, 1999. MIT Press.

[Sohn et al., 2021] Kihyuk Sohn, Chun-Liang Li, Jinsung
Yoon, Minho Jin, and Tomas Pfister. Learning and evaluat-
ing representations for deep one-class classification, 2021.

[Tax and Duin, 2004] David Tax and Robert Duin. Support
vector data description. Machine Learning, 54:45–66, 01
2004.

[Vincent et al., 2008] Pascal Vincent, Hugo Larochelle,
Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoen-
coders. In Proceedings of the 25th international confer-
ence on Machine learning, pages 1096–1103, 2008.

http://https://onnx.ai

	Introduction
	Anomaly detection
	Related work

	System architecture and workflow
	Preprocessing
	Model
	Classification

	Deployment
	Conclusions and future work

