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Abstract
Training a neural network to perform a real-world
task is an expensive process. A large amount of la-
belled data is needed, and often the trained model
fails to generalize to visual domains other than
the training one. Unsupervised Domain Adapta-
tion methods can help to solve both issues: pro-
vided that enough unlabelled data is available from
the domain of interest, a network can be trained
by using only labelled samples from a -possibly
synthetic- other domain. Several proposed ap-
proaches for UDA rely on a multi-branch architec-
ture, but they need human experts to manually ad-
just the adaptation branch for a specific backbone
architecture (e.g. ResNet). This process can be au-
tomated by using Neural Architecture Search, but
a method to rank architectures without using target
labels is needed. We tackle this issue by propos-
ing EMS, an ensemble model selection method that
combines several metrics to define a target accu-
racy proxy, which we use to optimize the secondary
branch.

1 Introduction
Unsupervised Domain Adaptation (UDA) enables the trans-
fer of domain knowledge from a source domain to a target
domain, for which only unlabelled data is available. Several
UDA methods employ a dual-branch architecture. The main
branch performs the required task, and the secondary branch
performs a task that leads the network to generalize to the tar-
get domain. For example, adversarial methods train the main
branch supervisedly on source data, and add a discriminator
branch, which reduces the distributional domain gap by mak-
ing the domains indistinguishable. The architecture of the
adaptation branch is typically manually designed by experts,
with little or no guarantee that it would be optimal for any
backbone or data. Neural Architecture Search could be em-
ployed to optimize the architecture of the auxiliary branch.
However, the lack of target labels prevents the network to be
evaluated directly on target, making the optimization against
target accuracy challenging.

We propose Adversarial Branch Architecture Search for
Unsupervised Domain Adaptation (ABAS) [Robbiano et al.,

2022] to address this limitation. More specifically, we em-
ploy an Ensemble Model Selection metric to define a proxy
for target accuracy without the need for target labels. Then,
we use a multi-fidelity Bayesian Optimization algorithm
(BOHB) [Falkner et al., 2018] to search for both architec-
ture and hyperparameters of the adversarial branch. We con-
duct an in-depth performance evaluation of two adversarial
methods, DANN [Ganin et al., 2016] and ALDA [Chen et
al., 2020], and show how ABAS can consistently improve
their performance on three datasets.

2 Method
As previously mentioned, a number of UDA methods employ
a dual-branch architecture. While in our work we explicitly
apply ABAS to domain adversarial learning, it would be triv-
ial to extend the idea to other multi-branch methods.

2.1 Adversarial branches for Domain Adaptation
Let us define a dataset Xs = {xi

s, y
i
s}

Ns
i=0 drawn from a la-

beled source domain S, and a dataset Xt = {xj
t}

Nt
j=0 from

a different unlabeled target domain T , sharing the same set
of categories. Our goal is to maximize the classification ac-
curacy on Xt while training on Xs. The overall architec-
ture consists of 3 components: the feature extractor G, the
labeled classifier C and the adversarial branch D. The ba-
sic intuition behind discriminative adversarial approaches for
domain adaptation is that a domain classifier is trained to dis-
tinguish between source and target samples; as its gradient
is reversed, the features in G are trained so that source and
target have similar representations. The model is trained by
optimizing the following objective function:

min
G,C,D

LCE(C(G(xs)), ys) + λLAdv(D(G(xs ∪ xt)) (1)

Where LCE is the standard cross-entropy loss, computed on
source samples only, and LAdv is the adversarial loss trained
to reduce the domain gap. How LAdv is defined depends on
the specific adversarial method which is being implemented
(refer to the referenced papers for further details).

2.2 Bayesian Optimization for AutoML
For efficiency, we adopt BOHB, a multi-fidelity combination
of BO and Hyperband [Li et al., 2017]. While single fidelity
BO evaluates all samples with full budget, BOHB resorts to



Algorithm 1 BO auxiliary branch optimization

1: Input: Domain adaptation method Q, Performance esti-
mator E, BO surrogate model p(f |Θ, D) and acquisition
function α(Θ|D)

2: for t = 1 to T do
3: Recommend {Θj

t}Bj=1 = argmaxαt−1(Θ|D)
4: for j = 1 to B in parallel do
5: Build the auxiliary branch and evaluate E(Q(Θj

t ))

to obtain its corresponding performance metric f j
t

6: end for
7: Update D and thus p(f |Θ, D) with {Θj

t , f
j
t }Bj=1

8: end for
9: return The best performing model according to

E(Q(Θ∗))

partial evaluations with smaller-than-full budget, excluding
bad configurations early in the search process and reserving
computational resources for the most promising configura-
tions. So, given the same time budget, it evaluates many more
configurations and it achieves faster optimization than com-
peting methods.

2.3 Ensemble-based Model Selection (EMS)
Model selection in the context of UDA is extremely challeng-
ing, as target labels are not available. To overcome this, we
propose using an ensemble of weakly correlating predictors.
Experimentally, we show how a linear regressor over these
metrics, trained on a single dataset, can capture the ranking
between models on a different unseen dataset, thus highlight-
ing the generalization power of this approach.

In our implementation, we adopt six weakly-correlating
metrics: target entropy, diversity of class prediction, Silhou-
ette and Calinski-Harabasz scores to measure how much fea-
tures are well-clustered, accuracy on the source domain, and
consistency of pseudolabels during training. Note how all of
these metrics, with the exception of the source accuracy, are
computed on the target domain.

2.4 Auxiliary branch optimization
A full overview can be found in Fig. 1 and Algorithm 1:
ABAS combines BOHB [Falkner et al., 2018] and an adver-
sarial method of choice, with our model selection strategy.
Given a fixed budget, ABAS performs a number of rounds, al-
ternating between sampling and evaluating. At each step, we
sample the Bayesian acquisition function α(Θ|D) for B dif-
ferent configurations {Θj

t}Bj=1. The configurations are used
to build auxiliary branches for method Q and the resulting
network is trained on the target setting. After training, super-
vised (from the source) and unsupervised (from the target)
features are collated for our model selection module. The
ensemble predictor finally gives feedback to the BO process.
This procedure is repeated for a given number of rounds and
in the end the best performing model is returned.

3 Potential impact in industrial settings
The ability to generalize to different domains is a major need
in many computer vision applications. Since manual data an-

Figure 1: At each iteration, the Bayesian Optimization (BO) acqui-
sition function proposes a number of candidate branch architectures.
After training, we extract a number of supervised (source) and un-
supervised (target) features which are fed into our ensemble-based
performance estimator. Its feedback is sent to BO, thus closing the
loop.

notation is way more expensive than unlabelled data collec-
tion, it is often desirable to train a model for use on a new
domain without repeating the data annotation process. More-
over, this allows generating synthetic data (which is labelled
for free by definition) and using it to train models able to
perform tasks on real-world data. An example of an applica-
tion is autonomous driving: labelled images can be gathered
from a simulated environment and used for real-world mod-
els [Dosovitskiy et al., 2017; Zolfaghari Bengar et al., 2019].
Another field that can benefit from the improvement of UDA
methods is robotics. Machines that make use of computer vi-
sion often happen to reduce their performance dramatically
due to environmental changes: for example, different light-
ing conditions could be enough to make a robot useless. On
the other side, the performance could also decrease within
the same environment, if the robot needs to manipulate new
objects. Without domain adaptation and generalization meth-
ods, launching a new product or even changing the texture of
an existing one would require the collection of a new hand-
crafted dataset.

4 Conclusions
The shift from hand-crafted to automated architecture search
is ongoing, as it is witnessed by the flourishing NAS re-
search and techniques. ABAS fills in two important require-
ments of NAS for UDA: it provides a data-driven strategy
EMS for model selection, circumventing the lack of target
labels; and it focuses on searching the architecture of auxil-
iary branches attached to a pre-trained backbone, essential
practise for state-of-the-art performance. Our experiments
show how ABAS consistently improves the performance of
the baselined adversarial UDA methods (Tab. 1, 2, 3), con-
firming the importance of the adversarial branch architecture.
Future work might evaluate ABAS on a broader set of UDA
methods, possibly including self-supervised approaches.



A-W A-D D-W D-A W-D W-A AVG
DANN 85.0±0.5 82.5±0.5 96.7±0.2 63.9±1.1 99.2±0.3 64.7±0.7 82.0
ABAS-DANN 89.4 87.6 98.4 64.1 99.8 69.3 84.8
ALDA 94.8±0.6 91.6±0.9 98.3±0.4 69.6±0.9 99.9±0.0 70.8±0.7 87.5
ABAS-ALDA 96.1 95.0 98.5 75.9 100.0 70.7 89.4

Table 1: Results of ABAS on Office31 with a ResNet-50 backbone for all the source-target combinations of the domains Amazon, Webcam
and DSLR.

Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr AVG
DANN 39.8 58.0 68.1 48.6 57.0 59.9 46.9 38.4 68.8 63.2 47.7 75.9 56.0
ABAS-DANN 44.9 61.1 71.2 52.7 60.4 62.5 50.1 43.1 70.0 65.4 50.9 77.1 59.1
ALDA 46.4 68.6 74.6 57.6 67.0 69.4 57.2 46.3 75.6 69.2 53.3 80.8 63.8
ABAS-ALDA 51.5 71.7 75.5 59.8 69.4 69.5 59.8 47.1 77.7 70.6 55.2 80.2 65.7

Table 2: Results of ABAS on Office-Home, using a ResNet-50 backbone for all the source-target combinations of the domains Art, Clipart,
Product and Real World.

P-A C-A S-A A-P C-P S-P A-C S-C P-C A-S C-S P-S AVG
ALDA 89.3 91.9 69.9 98.3 97.3 63.4 85.1 75.2 74.3 79.2 70.6 60.7 79.6
ALDA + EMS 90.2 92.0 72.3 98.4 97.8 69.5 86.0 82.1 72.1 80.7 75.1 66.1 81.9
ABAS-ALDA 93.1 91.8 78.1 98.7 97.8 70.8 88.7 84.9 69.7 79.8 69.5 64.9 82.3

Table 3: Results of ABAS on PACS, using a ResNet-50 backbone, + EMS: experiments run with our model selection strategy.
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