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Abstract
Nowadays, deep learning is a key technology for
many applications such as anomaly detection. The
role of Machine Learning (ML) in this field relies
on the ability of a machine to inspect images to de-
termine the presence or not of anomalies.
Frequently, in Industry 4.0 w.r.t. the anomaly de-
tection task, the images that compose a dataset are
not optimal, contain edges or areas, not of interest.
Thus, this study aims to identify a systematic way
to train a neural network able to focus only on the
area of interest. The study is based on the defini-
tion of a loss to be applied in the training phase
of the network that, through the use of masks, gives
higher weight to the anomalies identified within the
area of interest.
The idea is to add an Overlap Coefficient to the
standard cross-entropy. In this way, the more the
identified anomaly is outside the area of interest
greater is the loss. We call the resulting loss Cross
Entropy Overlap Distance (CEOD).
The advantage of adding the masks in the training
phase of the network is that it is forced to learn and
recognize defects only in the area circumscribed by
the mask itself. The added benefit is that during
inference, these masks will no longer be needed.
Therefore, there is no difference, in terms of execu-
tion times, between a normal Convolutional Neu-
ral Network (CNN) and a network trained with this
loss.
In some applications, either the masks are deter-
mined at run-time through a trained segmentation
network, as we have done for instance in the "Ma-
chine learning for visual inspection and quality
control" project, funded by the MISE Competence
Center Bi-REX.

1 Introduction
The detection of anomalies in industrial image data is of the
highest importance for many tasks in the field of computer
vision. In the task of surface analysis, very often, the images
acquired in an industrial environment contain some sections

that are not part of the surface to be inspected. Just think of
images of products running on conveyor rollers or connected
to other components not subject to inspection or simply when
images are taken of the edge of the product which inevitably
incorporates part of the background. In many cases, if we
know the shape of a product to be inspected, we can sim-
ply use some traditional image processing techniques to re-
move the useless parts from the images. But, in other cases,
we cannot know the exact shape of our product or where the
background appears in the image.

Then, this work proposes and tests a new approach to iden-
tify a systematic way to train a CNN able to focus only on
the area of interest. To do that, we identified the polygon
that circumscribes the most important pixels for classification
according to CNN. After that, let’s calculate how much this
polygon overlaps with the mask that is provided, for each im-
age, during the training phase. The calculated overlap value is
added to the loss of the network, to force the network to rec-
ognize the most important pixels, only within the area marked
by the masks.

2 Cross Entropy Overlap Distance
The idea is to get an overlap value between objects to min-
imize during the training of the CNN. As an overlap value,
we use the Overlap Coefficient (aka Szymkiewicz - Simpson
coefficient) defined by Equation 1:

overlapc(Ai, Aj) =
|Ai ∩Aj |

min(|Ai, Aj |)
(1)

Where Ai and Aj are the area of two objects. In our case,
the two objects are a mask that delimited the surface to be
inspected and a polygon extracted from the hottest pixels in
the heat map produced by the network.

Then, at the end of each forward pass of the network’s
training, the heat map is calculated by the GradCam algo-
rithm [Selvaraju et al., 2017]. After this, we can extract the
pixels that were found to be the most important for classifi-
cation (hottest pixels, see Figure 1). Then, we try to calculate
how much these hottest pixels are contained inside the mask.

We start with the initial situation displayed in Figure 2.



Figure 1: Creation of the polygons from hottest pixels.
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Figure 2: Stylized sample image with Ad and Agt as area of the
network detection and mask respectively.

Then, the Overlap Coefficient equation became:

overlapc(Ad, Agt) =
|Ad ∩Agt|

min(|Ad, Agt|)
(2)

Where Ad is the area of the detection of the network obtained
through GradCam and Agt is the segmentation mask (or area
of the ground truth) obtained with a manual segmentation or
using a segmentation neural network [He et al., 2018] [Chen
et al., 2017] [Ronneberger et al., 2015]. In this case, if Ad

is a subset of Agt or the converse, Overlap coefficient is 1.
If we want to add this term to the loss function of the neural
network, we need to obtain the complementary of Overlap
coefficient, obtaining a new value called Overlap Distance
expressed in Equation 3:

overlapd(Ad, Agt) = 1− |Ad ∩Agt|
min(|Ad, Agt|)

(3)

In this way, when Ad is subset of Agt, Overlap Distance is 0,
giving no contribution to the loss.

Now we need to add this new term to the Cross-Entropy
loss [Mannor et al., 2005]. Here, for simplicity, we use the
binary cross-entropy loss defined by the equation:

bce = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)) (4)

Where N is the number of examples, yi and p(yi) are the
label and the result of the network for the i-th example re-
spectively. Obtaining the Cross Entropy Overlap Distance
(CEOD):

Algorithm 1 CEOD
Input: x, y,mask

predict← net(x, y)
heatmap← GradCam(predict)
overlap_d← overlap_d(mask, heatmap)
loss← binary_crossentropy + overlap_d
→ back propagation

CEOD = bce+ overlapd(Ad, Agt) (5)

CEOD = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi))

+ ω(1−
|Ai

d ∩Ai
gt|

min(|Ai
d, A

i
gt|)

)

(6)

The term ω in Equation 6 is a new hyper-parameter to be set
which represent the degree of incision of the new term in the
overall loss.

Algorithm 1 shows the process behind CEOD loss.

3 Challenges & Prospectives
One of the biggest challenges of this application is trying to
force a typical CNN to focus its attention only on the impor-
tant part of an image. The problem arises from two facts: the
first is that the important part of an image is not always of
the correct shape to be cropped and given in input to a neu-
ral network. The second is because, in the task of anomaly
detection, we do not always know a priori the object (defect)
that we want to identify (localize or segment). Teaching a
CNN where to look, would allow us to avoid using large (and
slow) neural networks for semantic segmentation or object
detection, but at the same time, exploit a result that could be
obtained with those networks.

This work is still under development and the final sys-
tem will be compared with the state-of-the-art CNNs in the
task of surface inspection on both industrial and benchmark
datasets.
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