
Fine-grained Source Code Similarity with Tree Kernels
to Support Software Testing

Francesco Altiero, Luigi Libero Lucio Starace,
Anna Corazza, Sergio Di Martino, Adriano Peron

Laboratorio di Artificial Intelligence, Privacy and Applications (AIPA)
Dipartimento di Ingegneria Elettrica e delle Teconologie dell’Informazione

Università degli Studi di Napoli Federico II, Italy
{francesco.altiero, luigiliberolucio.starace, anna.corazza, sergio.dimartino, adrperon}@unina.it

Abstract
Computing a meaningful similarity among frag-
ments of source code can be valuable in many
software testing scenarios, such as regression te-
st prioritization or model inference/test generation
for web applications. In both these cases, a tree-
structured representation of the source code could
be exploited to provide useful structural informa-
tion. Tree Kernels are a class of kernel functions,
largely used in Machine Learning and Natural Lan-
guage Processing, specifically suited for computing
the similarity between tree-structured objects. In
this work, we report on our current investigations
in the definition of Tree Kernel-based solutions to
improve software testing. Preliminary experimen-
tal results are encouraging and motivate further re-
search in applying Tree Kernels to these software
testing tasks.

1 Introduction
In different tasks of Software Engineering, tree-structured da-
ta arises quite naturally. For example, source code can be
naturally represented by its Abstract Syntax Tree (AST) re-
presentation, and many document formats such as HTML or
XML are typically defined by their tree-structured Document
Object Model (DOM). Measuring the similarity between such
tree-structured objects is crucial for many different software
engineering tasks. Tree Kernel (TK) functions are a particu-
lar family of kernel functions specifically meant to evaluate
similarity between two tree-structured objects. In this paper,
we consider two of such scenarios: identifying critical chan-
ges between two subsequent versions of the same software
to support regression test prioritization, and identifying near-
duplicate web pages when automatically inferring state-based
models for web applications.

In the following, we start by briefly presenting tree kernel
functions in Section 2. Then, in Sections 3 and 4, respec-
tively, we describe the regression test prioritization and the
web application model inference scenarios, with particular
emphasis on the rationale motivating the application of tree
kernels. A section containing conclusions and future work
ends the paper.

2 Tree Kernel functions
TKs have been extensively studied in different tasks of Na-
tural Language Processing [Moschitti, 2006b], usually invol-
ving syntactic trees. Among their applications in the Software
Engineering domain, in [Corazza et al., 2010] they have been
applied to Abstract Syntax Tree representations of source co-
de for clone detection. More recently, in [Ishikawa et al.,
2020; Shin et al., 2021] TKs are used to compute similarity
between web pages aiming at fake website detection.

The computation of the similarity between two trees is ba-
sed on the representation of each tree as a set of tree fragmen-
ts, each given by a connected subset of nodes and edges of the
original tree. The similarity between tree fragments is then
used to build the similarity between the original trees. Dif-
ferent classes of TK functions can be defined, characterized
by different definitions of tree fragments [Moschitti, 2006a],
including:

• Subtree Kernels: only proper subtrees of the original
trees can be tree fragments, i.e. if a node belongs to a
fragment, then also all its descendants do.

• Subset Tree Kernels: where if a node belongs to a frag-
ment then all or none of its children do. In this way, also
incomplete subtrees, limited at any arbitrary depth, can
be tree fragments.

• Partial Tree Kernels: this is the most general definition,
where if a node belongs to a fragment, then any number
of its children do, including zero.

The different definitions of tree fragments allow to captu-
re different properties of the tree to be compared and the-
refore result in different performance of the system under
development.

3 Tree Kernels for Regression Test
Prioritization

Regression testing is a practice aimed at providing confiden-
ce that, after maintenance activities, the unchanged parts of
the software still behave as expected. Anyhow, due to resour-
ces constraints and/or to the rapid evolution pace, it may not
be possible to re-execute all the test cases after each chan-
ge. In this scenario, we consider prioritization, which aims
at producing an ideal ranking among test cases. With such



a ranking, even when the test suite execution is interrupted
(e.g.: due to time or resources constraints), the fault-revealing
capability is maximized. In other words, regression test prio-
ritization aims at ranking test cases so that the tests that reveal
faults are executed as early as possible.

We envision a novel test case prioritization approach that
takes into account also the structural nature of the changes
introduced by programmers in the new version of the code to
find the ones more prone to introduce faults. Then, we aim at
prioritizing tests covering these more critical changes.

The novel proposal presented in [Altiero et al., 2020] aims
at assessing the structural similarity between the source co-
de of two software versions, in order to include this finer-
grained information in the evaluation of the code churn. In
fact, it combines this information with more traditional cove-
rage analysis to find the tests which are more likely to find
errors, so that they can be given higher priority with respect
to the others. To extract such structural information, we ap-
ply TK to the Abstract Syntax Tree representations of source
code aiming to identify fault-prone changes. Then, the rank
of tests is based on a combination of the score obtained by
TKs and more traditional coverage-based metrics.

This new strategy has been assessed on real-world software
artifacts with seeded faults and its performance has been com-
pared with well-known prioritization techniques, using fault
detection rate metrics. The comparison showed that the inte-
gration of TKs improves the ranking performance and there-
fore we can conclude that a suitable use of the TKs is effec-
tive in highlighting fault-prone changes in the code and that
this information can be valuable to define a more effective
prioritization of test cases.

4 Tree Kernels for Web Application Model
Inference and Near-duplicate Detection

End-to-End testing of web applications often exploits state-
based models of the site under test. In these models, states
represent features of the web application, while transitions
correspond to reachability relationships. The construction of
such models can be automated by means of systematic explo-
ration techniques (a.k.a. crawling). Typically, a crawler can
infer a state-based model of a web application in a depth-first
fashion by starting at a given url (the homepage of the web ap-
plication), and by systematically generating user events (e.g.:
click on links, fill text fields, submit forms, etc.). After execu-
ting each event, the crawler checks whether the resulting web
page is already represented in the model. If not, a new state
representing the feature is created. The crawling process con-
tinues by generating more events until a given time budget is
exhausted or all the possible events have been generated.

Several model-based testing techniques can be applied to
such state-based models, including test case generation [Bia-
giola et al., 2017; Biagiola et al., 2019] or test artifacts gene-
ration [Stocco et al., 2017; Stocco et al., 2016]. Of course, an
accurate construction of the model improves the performance
of these techniques. A known problem affecting this automa-
ted model inference task is represented by the so-called near-
duplicate states, i.e., states representing slightly different pa-

Figura 1: Example of near-duplicate states [Corazza et al., 2021].

ges that are in fact instances of the same feature [Yandrapally
et al., 2020].

As an example, let us consider Figure 1, depicting three
web pages from an imaginary bookstore web application. The
homepage features a list of available books. Assuming that
the crawling started at the homepage, initially model only
contains the homepage state. After generating a click event
on one of the books, the crawler is redirected to a detail web
page with additional information on that book. The book de-
tail state is added to the model as well. Subsequently, the cra-
wler generates a click event on the other book, resulting in the
detail page for that book. The detail pages for the two books
are of course different in terms of contained text, figures, etc.,
but from a functional testing view-point they are conceptually
the same, as both are an instance of the “Show book details”
functionality. Nevertheless, a “naive” crawler would create a
new state for the second book detail page, as that page is dif-
ferent from all the ones it has previously visited. Web Page A
and Web Page B are near-duplicate states, and including both
on them has a negative impact on the precision and comple-
teness of the resulting model. This, of course, has a negative
impact on the subsequent model-based testing tasks, adver-
sely affecting, for example, size, running time, and achieved
coverage of generated test suites.

Hence, effective techniques to detect near-duplicate states
during the crawling process could prove to be very valuable
in many industrial scenarios, as also witnessed by the interest
of our industrial partners NetCom Group1, a large Italian con-
sulting enterprise active, among other things, in the multime-
dia and web testing domain, and with which we are actively
collaborating in these studies.

Following [Yandrapally et al., 2020], we define near-
duplicate detection as a multiclass classification problem, ta-
king in input a pair of web pages from the same web appli-
cations, and producing as output one of the following distinct
categories:

• Clone, if the two pages have the same semantic,
functional and perceptible features.

• Distinct, if the two pages present any semantic or
functional difference.

• Near-duplicate, if the two pages are noticeable diffe-
rent, but the overall functionality being exposed is the
same.

1https://www.netcomgroup.eu/en/



TKs can be effectively applied to this classification ta-
sk because a web page can be naturally represented by its
tree-structured DOM representation. To experimentally as-
sess the performance of the proposed approach in detec-
ting near-duplicate web pages, a freely-available massive
dataset of about 100k manually annotated web page pairs
has been considered. The classification performance of the
proposed approach has been compared with other state-of-
the-art near-duplicate detection techniques [Starace, 2021;
Corazza et al., 2021]. Preliminary results show that our ap-
proach performs better than state-of-the-art techniques in the
near-duplicate detection classification task.

5 Conclusions and Future Work
TK functions are a class of kernel functions, popular in other
disciplines such as natural language processing, that can be
used to measure the similarity between tree-structured objec-
ts, that arise quite naturally in many different Software En-
gineering scenarios. In this work, we consider two of such
scenarios, namely regression test prioritization and model in-
ference for web applications, and present the novel TK-based
solutions we are currently investigating.

Our preliminary experiments show that capturing structu-
ral information by means of tree kernels leads to promising
results in both the considered scenarios. However, in both
cases the research is still ongoing, and currently focusing on
integrating this information with other available sources and
on performing more extended experimental assessments.

More in detail, for what concerns the regression test prio-
ritization scenario, future works include significantly exten-
ding our empirical evaluation by also considering software
artifacts with real faults, and not only seeded ones. Further-
more, we plan to use particular TKs which can also asses the
semantical similarity between code ASTs. In this case, TKs
can give insights not only on structural changes, but also de-
tect error-prone code churns based on the nature of changes.
We expect that taking into account this enchanced informa-
tion can further improve the performance of our regression
test prioritization techniques.

As for the model inference for web applications scenario,
the promising results discussed in [Corazza et al., 2021] show
that TKs can be applied to near-duplicate detection, and mo-
tivate further research in this direction to assess the impact
of the technique on the quality of the inferred models and on
the application of test case generation and other model-based
testing techniques.

In the case of near-duplicate detection and model inferen-
ce, we see several research directions to further investigate the
potential of Tree Kernels. The first actions to consider aim at
improving the classification performance. To such aim, we
plan to customize TK functions specifically geared towards
detecting near-duplicate web pages. In particular, they should
take into account peculiar structural properties of web pages.
On the other hand, we want to explore the possibility of a mo-
re precise input representation which would give more infor-
mation to include into the similarity estimation. Eventually,
we want to implement the resulting modules as open-source
extensions of the Crawljax web crawler [Mesbah et al., 2008].

The performance of the resulting system will then be experi-
mentally assessed on the same data and with the same expe-
rimental procedure used in [Yandrapally et al., 2020], which
provides a valuable state-of-the-art benchmark both for near-
duplicate classification performances and for the quality of
the inferred models.

Furthermore, we plan to apply the proposed techniques not
only on simple open source web applications, but to verify
their generalizability also in real-world industrial scenarios
featuring more complex web applications, driven by our col-
laboration with NetCom Group. Moreover, we plan to in-
vestigate the effectiveness of TK-based near-duplicate detec-
tion also in fully-automated E2E testing [Di Martino et al.,
2021] of mobile applications, leveraging the tree-like layout
structure of their GUI.

Riferimenti bibliografici
[Altiero et al., 2020] Francesco Altiero, Anna Corazza, Ser-

gio Di Martino, Adriano Peron, e Luigi Libero Lucio Sta-
race. Inspecting code churns to prioritize test cases. In Te-
sting Software and Systems - 32nd IFIP WG 6.1 Interna-
tional Conference, ICTSS 2020, Naples, Italy, December
9-11, 2020, Proceedings, volume 12543 of Lecture Notes
in Computer Science, pages 272–285. Springer, 2020.

[Biagiola et al., 2017] Matteo Biagiola, Filippo Ricca, e
Paolo Tonella. Search based path and input data genera-
tion for web application testing. In International Sympo-
sium on Search Based Software Engineering, pages 18–32.
Springer, 2017.

[Biagiola et al., 2019] Matteo Biagiola, Andrea Stocco, Fi-
lippo Ricca, e Paolo Tonella. Diversity-based web test ge-
neration. In Proceedings of the 2019 27th ACM Joint Mee-
ting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pages 142–153, 2019.

[Corazza et al., 2010] Anna Corazza, Sergio Di Martino, Va-
lerio Maggio, e Giuseppe Scanniello. A tree kernel based
approach for clone detection. In 2010 IEEE International
Conference on Software Maintenance, pages 1–5. IEEE,
2010.

[Corazza et al., 2021] Anna Corazza, Sergio Di Martino,
Adriano Peron, e Luigi Libero Lucio Starace. Web appli-
cation testing: Using tree kernels to detect near-duplicate
states in automated model inference. In Filippo Lanubi-
le, Marcos Kalinowski, e Maria Teresa Baldassarre, edi-
tors, ESEM ’21: ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement, Bari,
Italy, October 11-15, 2021, pages 37:1–37:6. ACM, 2021.

[Di Martino et al., 2021] Sergio Di Martino, Anna Rita Fa-
solino, Luigi Libero Lucio Starace, e Porfirio Tramonta-
na. Comparing the effectiveness of capture and replay
against automatic input generation for android graphical
user interface testing. Software Testing, Verification and
Reliability, 31(3):e1754, 2021.

[Ishikawa et al., 2020] Taichi Ishikawa, Yu-Lu Liu, Da-
vid Lawrence Shepard, e Kilho Shin. Machine learning for



tree structures in fake site detection. In Proceedings of the
15th International Conference on Availability, Reliability
and Security, pages 1–10, 2020.

[Mesbah et al., 2008] Ali Mesbah, Engin Bozdag, e Arie
Van Deursen. Crawling ajax by inferring user interface
state changes. In 2008 Eighth International Conference
on Web Engineering, pages 122–134. IEEE, 2008.

[Moschitti, 2006a] Alessandro Moschitti. Efficient convo-
lution kernels for dependency and constituent syntactic
trees. In European Conference on Machine Learning,
pages 318–329. Springer, 2006.

[Moschitti, 2006b] Alessandro Moschitti. Making tree ker-
nels practical for natural language learning. In 11th con-
ference of the European Chapter of the Association for
Computational Linguistics, 2006.

[Shin et al., 2021] Kilho Shin, Taichi Ishikawa, Yu-Lu Liu,
e David Lawrence Shepard. Learning dom trees of web
pages by subpath kernel and detecting fake e-commerce
sites. Machine Learning and Knowledge Extraction,
3(1):95–122, 2021.

[Starace, 2021] Luigi Libero Lucio Starace. Detecting near-
duplicate states in web application model inference: a tree
kernel-based approach, 2021. Presented at the ISSTA’21
Doctoral Symposium.

[Stocco et al., 2016] Andrea Stocco, Maurizio Leotta, Filip-
po Ricca, e Paolo Tonella. Clustering-aided page object
generation for web testing. In International Conference
on Web Engineering, pages 132–151. Springer, 2016.

[Stocco et al., 2017] Andrea Stocco, Maurizio Leotta, Filip-
po Ricca, e Paolo Tonella. Apogen: automatic page ob-
ject generator for web testing. Software Quality Journal,
25(3):1007–1039, 2017.

[Yandrapally et al., 2020] Rahulkrishna Yandrapally, An-
drea Stocco, e Ali Mesbah. Near-duplicate detection
in web app model inference. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, pages 186–197, 2020.


	Introduction
	Tree Kernel functions
	Tree Kernels for Regression Test Prioritization
	Tree Kernels for Web Application Model Inference and Near-duplicate Detection
	Conclusions and Future Work

