
 

 

Abstract 

This paper presents the state-of-the-art review of 
the different approaches for Neural Architecture 
Search targeting resource constrained devices such 
as microcontrollers. As well as the 
implementations of On-Device learning techniques 
for such devices. The approaches like MCUNet 
have been able to design a tiny neural architecture 
with low memory and computational requirements 
which can be deployed on microcontrollers. 
TinyOL and TML-CD are the state of the solutions 
for On-device learning to address concept drift and 
cope with the accuracy drop on real time data. 

1 Automated Machine Learning  

Automated Machine Learning (AutoML) tools 
automatically design a learning algorithm and 
simultaneously set its hyperparameters to optimize its 
empirical performances on a given dataset that shapes an 
application problem. AutoML sets a field which helps the 
ML and embedded C developer experts, who don’t have 
years of knowledge and experiences, to apply ML to their 
problems with ease being more productive. AutoML focuses 
on the automation of several problems associated with 
extraction, transformation & loading of data, training and 
deployment of the models which need to be deployed on 
resource un-constrained processors. Optimization of the 
hyperparameters (HPO) is one of the major focuses of the 
AutoML. When dealing with tiny devices, resource 
constraint is a major problem. In most cases resource 
constraints are not factored into AutoML tools.  

1.1 Neural Architecture Search 

When a ML algorithm to optimize is an Artificial Neural 
Network (ANN), AutoML specializes into Neural 
Architecture Search (NAS). It is therefore a focused subset 
of AutoML to ANN. NAS aims to find the best architecture 
with better performance for a neural network. It takes the 
task carried out by human experts manually adjusting an 
ANN (topology and associated hyper parameters) and 
automates this task to find out more complex architectures 
which performs even better than manually handcrafted 

networks. It is comprised of a set of tools and methods 
which explores a large hyper dimensional search space to 
train, evaluate and test using a certain optimization strategy 
and select the resulting ANN which performs accurately for 
the given target by maximizing an objective function. 
Although NAS seems to be a relatively different field, the 
under lying problem is similar as that of the hyperparameter 
optimization. Designing an optimal, accurate and light 
weight ANN to fit the target devices with limited resources 
is a problem which is addressed by the research community. 
NAS can be made to design a light and accurate network 
automatically by optimizing over a search space of given 
requirements. NAS can be made to optimize several metrics 
during the design process like memory requirements, 
FLOPs, MACCs, latency, inference per second etc.  

2 NAS approaches for tiny devices 

These solutions are mainly focused on memory constrained 
edge devices and the search space for the architecture search 
is optimized to find such architectures. 
In Hard Constrained diffeRentiable NAS [1], a continuous 
probability distribution is induced over the search space, and 
this makes the search space continuous. This helps creating 
a sample sub-network using Gumbel SoftMax Trick [2]. 
The search space is divided into Micro and Macro spaces, 
where the Micro space is used to control the internal 
structures of each building blocks of the network. These 
blocks are the elastic versions of the MBInvRes block [3]. 
Whereas the Macro search space is used to control how 
these blocks relate to each other and how these blocks are 
interconnected.. This solution mainly focuses on the latency. 
It performed on ImageNet dataset with Top-1 accuracy of 
77.3% under a short latency of 32ms.  
The Structural wired Neural architecture search for internet 
of things (MSNet) [4] is graph-based NAS. This focuses on 
reducing the size of the model to as low as 200KB of peak 
memory usage and 42M MACCs (multiply and accumulate 
operations) on Visual Wake Words and a 250KB peak 
memory usage for ImageNet-1000. On top of that structure 
level pruning method is used to explore a compact 
architecture with higher the pruning level to lower the 
MACCs and the performance also decreases with the 
increased level of pruning.  
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Co-Design NAS [5] is a framework which enables the joint 
exploration of the space of neural architectures, hardware 
implementation and quantization. It’s a combination of Pure 
software NAS and Hardware aware NAS and the search is 
made to find a Pareto frontier between hardware efficiency 
and accuracy. The search process is computationally heavy 
considering the joint exploration on CIFAR10 with a LUT 
of 30,000 this method provided a network with an accuracy 
of 82.98% under 460 Kbits of parameter size even after 
quantization. This method is more flexible and robust 
compared to traditional design using fixed architecture.  
E-DNAS [6], is a differentiable architecture search method 
for designed light weight networks. This method finds 
networks with low latency and better performing DNN 
which can be deployed on memory constrained devices. The 
three main ideas behind this approach are a depth aware 
convolution to compute high resolution feature maps then 
parallel architecture search pipeline on the feature maps and 
learns the optimal size and parameters of the convolution 
kernels. This optimization process is driven by a multi-
objective differentiable loss function of accuracy and 
latency. Lastly to increase the architecture search speed a 
novel block is used which connects the learned meta kernels 
during training. The results came out with ImageNet top-1 
accuracy of 76.9% with 5.9M parameters and a latency of 
38ms.  

Unfortunately, this method is not tested on MCU level 
memory constraints. [7] Proposes a framework which is 
based on Bayesian Optimization to optimize the 
hyperparameters of ANN which can be deployed on MCUs 
as the computational requirements for the optimization of 
hyperparameters and structure of ANN is much higher than 
that available from a MCU. 

2.1 Approaches for Microcontrollers 

AutotinyML [7] proposes a framework, based on Bayesian 
Optimization (BO), to optimize the hyperparameters of a 
Convolutional Neural Network by dealing with black box 
deployable constraints (memory occupation) extracted from 
STM32Cube.AI tool. It is composed of two different 
phases. In the first phase, a non-linear SVM classifier is 
used to approximate the feasible region of the search space 
associated to hyperparameters values most probably leading 
to DNNs models deployable on MCU. In the second phase, 
a BO is focused to the estimated feasible region with the 
aim to optimize the loss function. Moreover, a probabilistic 
regression model, specifically a Random Forest is used to 
approximate the objective function by using the Lower 
Confidence Bound. Results shown comparable accuracy 
w.r.t handcrafted baseline with a remarkable reduction of 
RAM, ROM and MACs. 
 

 
Solutions Approach Target Device Constraints Dataset Acc. 

% 

GPU 

hours 

Tested Applications 

HardCoRe-

NAS [1] 

Differentiable 

search space + 

one shot  

Edge-GPU/CPU Latency ImageNet 78.0 400 Image classificaiton 

MSNet[4] Evolution 

Search 

100-320K 

SRAM, (256KB-

1MB) Flash 

Peak memory 

usage 

CIFAR-10 89.09 8 Image classification, 

VWW 

Co-Design 
NAS[5] 

RL (architecture 
& quantization 

space) 

(0.5-3.5MB) 
Flash AIoT/ 

Mobile embedded 

Peak memory 
usage & througput 

CIFAR-10 82.93 NA Image Classification 

E-DNAS[6] Gradient SoC 
(ARM cortex-

A15) 

Low Latency, 
Memory 

ImageNet 76.9 70 Image classification 

AutotinyML [7] Bayesian 

Optimization 

MCU Memory User 

Identification 
from Walking 

Activity 

92.93 200 Human Activity 

recognition 

MCUNet[8] One shot + 
Evolution 

Search 

MCU Memory (model 
size + peak 

memory usage), 

Latency 

ImageNet 70.7 300 Image classification, 
Object detection, 

VWW 

uNAS[18] Aging 
Evolution 

MCU Model size, RAM 
usage 

MNIST 99.19 30 Image classification 

 
Table 1: Overview of different resource constrained NAS approaches and their performances 

 
MCUNet [8] Tiny Deep Learning on IoT Devices is a 
framework of system-algorithm co-design that jointly 
optimizes the neural architecture with TinyNAS and the 
scheduling of the inference with TinyEngine in a same loop. 
TinyEngine offloads redundant operations from runtime to 
compile time and only generates the code that will be 
executed by the TinyNAS which helps in reducing the 
memory requirements of the inference and allowing more 

memory for the model size. TinyNAS takes advantage of 
the memory reduced by TinyEngine and finds a high 
accuracy model compared to existing frameworks. It is a 
combination of one-shot NAS giving a super network with 
all subnetworks. This optimized space of subnetworks 
undergoes evolution search to find the best architecture. 
MCUNet achieved a record ImageNet accuracy of 70%+ on 
a STM32H743 MCU with an SRAM usage of 490KB and 



 

 

Flash usage of 1.9MB. Large datasets like ImageNet can be 
used by this method. Supports different memory constraints. 
Table 1 shows the overview of all the above-mentioned 
approaches, target devices and their performances. 
μNAS [18] is a combination of highly granular search space 
which almost takes into consideration every aspect of a 
network such as layer’s kernel size, stride, channels, pooling 
size, fully connected layer’s output dimension, connection 
between each layer, etc. Next the accurate resource use of 
computation is considered where the peak memory usage, 
model size, latency are the different aspects driving the loss 
function. Aging evolution and Bayesian Optimization were 
the two search algorithms compared. The former tends to 
perform better than the latter. In addition to that model 
compressing and pruning were done to reduce the memory 
requirements of the microcontroller (MCU). The 
experimental results showed an accuracy of 77.49% on 
CIFAR-10 with a model size of 685KB, RAM usage of 
909B and 41.2K MACs. This performance is better 
compared to the previous solutions in such highly 
constrained device like an MCU. It is still time expensive to 
search for architectures. Improvements can be made to 
reduce the search time by employing weight sharing to 
reduce the cost of training each candidate network and by 
not using the same search space throughout the entire search 
process by using a parameterized space granularity which 
can vary through the search space. 

3 On Device Learning 

This is an increasingly important topic in the ML 
community since it tries to match the availability of 
constrained memory and computational power. The 
environment in which the inference model is deployed is 
assumed constantly changing (being time varying) and this 
may cause accuracy drop of ML inferences. This is known 
as concept drift. Therefore, there is a need for a constant 
update of the inference model using fresh data to learn from 
them. On device learning makes shift the process from 
offline updating the ML model to automatically update with 
the real time data by ingesting new samples at run time so 
that the device simultaneously learns and deploys the model 
with constant adaptation. The accuracy needs to be 
maintained at higher levels and it shall also reduce the 
memory footprint to fit MCU hardware assets. 
In the next section, this paper reviews and discusses about 
the different approaches and strategies carried out to 
implement On-device learning considering the memory 
footprint be severely constrained.   

3.1 On Device Learning on MCUs 

On device learning enables resource constrained edge 
devices to continuously adapt its knowledge, synthetized 
into its model to new data and fitting the tight memory 
constraints of such devices. Concept drift is one of the major 
reasons for constant update of the network. This may result 
in lower accuracies since the environment data change in 
real time and if handled with no constant update of the 
model. To overcome this, the idea of on device learning at 

the edge helps since it scales, enable better personalization, 
privacy and set the base for federated learning (FL) [9].  
There are several approaches such as [10] introduces 
intelligent Cyber-Physical Systems (CPSs) and it is able to 
predict faults with autonomous behavior and self-adaptation 
on the CPS itself. This method helps in energy efficiency, 
reducing the bandwidth, autonomy can be achieved on 
CPSs. [11] proposes a novel solution for online learning and 
real time anomaly detection of pathological conditions using 
a low power MCU from ECG signals. The proposed system 
is based on Reservoir Computing followed by Principal 
Component Analysis (PCA) and One-Class Support Vector 
Machine (OC-SVM). This eliminates the need for storing 
ECG signals for longer periods of time and avoids the time-
consuming off-line search of anomalies. [12] proposes a 
Block based Binary Shallow Echo State Network (BBS-
ESN) which is a deeply quantized anomaly detector of oil 
leaks that happen in the wind turbines with fixed and 
minimal computational complexity. This network can be 
deployed on an off-the shelf MCU and the power 
consumption is greatly reduced. This is achieved by 
binarization of images and one bit quantization of network’s 
weights and activations. [13] proposes a novel Field 
oriented Control algorithm by means of extreme learning to 
modify the behavior and performance of electromechanical 
systems which are highly nonlinear and needs to adapt itself 
continuously over time. The Semi Binary Deep Echo State 
Networks (SB-DESN) proposed achieves a good control 
accuracy with less complexity. On top of that the paper also 
proposes a novel complexity optimization which reduces the 
memory footprint very low, such that it can be deployed 
even on MCUs. Interesting results were obtained on 
STM32H7 with an inference time of 20us. [14] proposes a 
highly accurate, less complex online learning anomaly 
detection Deep Echo State Network for water distribution 
systems which adapts to the time varying data distribution 
and can be deployed on an MCU. In this approach the 
online learning can be made in two different ways: single 
iteration and batch decomposition as per the memory 
constraint of the device. Tiny-Transfer-Learning (TinyTL) 
[15]proposes freezing of weights and learning the bias 
modules which eliminates the need for storing the 
intermediate activations. The results claim to have reduced 
the memory with little loss in the accuracy compared to fine 
tuning the full network. Compared to fine tuning only the 
last layer, TinyTL performs with better accuracy with little 
memory overhead. The memory can be further saved by 
feature extraction adaptation without losing the accuracy. 
Other’s state-of the art solutions for On-device learning on 
MCUs exist.  
TinyML with Online learning on MCUs (TinyOL) [16] is 
implemented in C++ and can be attached to an arbitrary 
existing network as an additional layer in MCUs. The last 
additional layer learns from the new data and updates its 
weights. As the network learns incrementally there is no 
need for storing the historical data for training reducing the 
memory requirements. New classes can be added by the last 
layer and can be trained upon user request. This method is 



 

 

like transfer learning in which fine tuning happens in the 
last few layers. Only one data pair of the real time stream is 
stored in the memory, thus reducing the memory footprint. 
It is flexible to modify the layer structure on the fly. It has 
been proven to be robust against concept drift. Yet this 
approach is limited as the models are trained offline and do 
not have support for training with 8-bit MCUs. The 
experimental results on fine tuning a network as well as on 
classification performed better with the stream of data on a 
device with less than 256KB SRAM.  
The other solution Tiny Machine Learning for Concept Drift 
(TML-CD) [17] is mainly focused on overcoming the 
accuracy drop due to concept drift with less memory 
requirements. This approach is composed of a feature 
extractor, Dimensionality Reduction operator, kNN 
Classifier and an adaptation module. The adaptation module 
adapts the training dataset for a kNN classifier with the new 
data. The adaptation mechanism is carried out in three 
different ways: active, passive and hybrid among which the 
latter has been proved to perform better than the other two. 
The hybrid adaptation is a combination of both passive and 
active methods. It continuously adapts over time and at the 
same time it discards the obsolete knowledge when a change 
is detected in the stream of data due to concept drift and this 
sets a bound-on memory footprint. This approach has been 
tested with MCUs with RAM as low as 96Kb to 512KB and 
the memory footprint is kept almost constant. It performs a 
faster recovery when a change is detected. The experimental 
results showed that the hybrid approach outperforms all the 
other adaptation mechanisms and recovers faster when there 
is concept drift. This approach can be further improved by 
implying learning mechanisms for the feature extractor 
block and by exploration of Sparse and Quantized solution 
for the TinyML algorithms. 

4 Conclusions  

We discussed several approaches of Neural Architecture 
Search for severely constrained devices to automate the 
design process of accurate ML architectures with 
consideration of the technological constrains imposed by the 
devices and On-device learning to eliminate concept drift 
and accuracy drop in edge devices. We further discussed on 
how these approaches can be improved in the future for 
better performing and robust solutions. Both these research 
fields are important for the growth of TinyML, a worldwide 
level community focused on the machine learning 
ecosystem for mW (and below) power consumption 
envelope devices, and deployment of Machine Learning on 
edge devices.  
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