

Abstract

This paper presents the state-of-the-art review of
the different approaches for Neural Architecture
Search targeting resource constrained devices such
as microcontrollers. As well as the
implementations of On-Device learning techniques
for such devices. The approaches like MCUNet
have been able to design a tiny neural architecture
with low memory and computational requirements
which can be deployed on microcontrollers.
TinyOL and TML-CD are the state of the solutions
for On-device learning to address concept drift and
cope with the accuracy drop on real time data.

1 Automated Machine Learning

Automated Machine Learning (AutoML) tools
automatically design a learning algorithm and
simultaneously set its hyperparameters to optimize its
empirical performances on a given dataset that shapes an
application problem. AutoML sets a field which helps the
ML and embedded C developer experts, who don’t have
years of knowledge and experiences, to apply ML to their
problems with ease being more productive. AutoML focuses
on the automation of several problems associated with
extraction, transformation & loading of data, training and
deployment of the models which need to be deployed on
resource un-constrained processors. Optimization of the
hyperparameters (HPO) is one of the major focuses of the
AutoML. When dealing with tiny devices, resource
constraint is a major problem. In most cases resource
constraints are not factored into AutoML tools.

1.1 Neural Architecture Search

When a ML algorithm to optimize is an Artificial Neural
Network (ANN), AutoML specializes into Neural
Architecture Search (NAS). It is therefore a focused subset
of AutoML to ANN. NAS aims to find the best architecture
with better performance for a neural network. It takes the
task carried out by human experts manually adjusting an
ANN (topology and associated hyper parameters) and
automates this task to find out more complex architectures
which performs even better than manually handcrafted

networks. It is comprised of a set of tools and methods
which explores a large hyper dimensional search space to
train, evaluate and test using a certain optimization strategy
and select the resulting ANN which performs accurately for
the given target by maximizing an objective function.
Although NAS seems to be a relatively different field, the
under lying problem is similar as that of the hyperparameter
optimization. Designing an optimal, accurate and light
weight ANN to fit the target devices with limited resources
is a problem which is addressed by the research community.
NAS can be made to design a light and accurate network
automatically by optimizing over a search space of given
requirements. NAS can be made to optimize several metrics
during the design process like memory requirements,
FLOPs, MACCs, latency, inference per second etc.

2 NAS approaches for tiny devices

These solutions are mainly focused on memory constrained
edge devices and the search space for the architecture search
is optimized to find such architectures.
In Hard Constrained diffeRentiable NAS [1], a continuous
probability distribution is induced over the search space, and
this makes the search space continuous. This helps creating
a sample sub-network using Gumbel SoftMax Trick [2].
The search space is divided into Micro and Macro spaces,
where the Micro space is used to control the internal
structures of each building blocks of the network. These
blocks are the elastic versions of the MBInvRes block [3].
Whereas the Macro search space is used to control how
these blocks relate to each other and how these blocks are
interconnected.. This solution mainly focuses on the latency.
It performed on ImageNet dataset with Top-1 accuracy of
77.3% under a short latency of 32ms.
The Structural wired Neural architecture search for internet
of things (MSNet) [4] is graph-based NAS. This focuses on
reducing the size of the model to as low as 200KB of peak
memory usage and 42M MACCs (multiply and accumulate
operations) on Visual Wake Words and a 250KB peak
memory usage for ImageNet-1000. On top of that structure
level pruning method is used to explore a compact
architecture with higher the pruning level to lower the
MACCs and the performance also decreases with the
increased level of pruning.

A quantitative review of automated neural

search and on-device learning for tiny devices

Danilo Pau, Prem Kumar Ambrose

System Research and Applications
STMicroelectronics, Agrate Brianza, Italy
Corresponding author: danilo.pau@st.com

mailto:danilo.pau@st.com

Co-Design NAS [5] is a framework which enables the joint
exploration of the space of neural architectures, hardware
implementation and quantization. It’s a combination of Pure
software NAS and Hardware aware NAS and the search is
made to find a Pareto frontier between hardware efficiency
and accuracy. The search process is computationally heavy
considering the joint exploration on CIFAR10 with a LUT
of 30,000 this method provided a network with an accuracy
of 82.98% under 460 Kbits of parameter size even after
quantization. This method is more flexible and robust
compared to traditional design using fixed architecture.
E-DNAS [6], is a differentiable architecture search method
for designed light weight networks. This method finds
networks with low latency and better performing DNN
which can be deployed on memory constrained devices. The
three main ideas behind this approach are a depth aware
convolution to compute high resolution feature maps then
parallel architecture search pipeline on the feature maps and
learns the optimal size and parameters of the convolution
kernels. This optimization process is driven by a multi-
objective differentiable loss function of accuracy and
latency. Lastly to increase the architecture search speed a
novel block is used which connects the learned meta kernels
during training. The results came out with ImageNet top-1
accuracy of 76.9% with 5.9M parameters and a latency of
38ms.

Unfortunately, this method is not tested on MCU level
memory constraints. [7] Proposes a framework which is
based on Bayesian Optimization to optimize the
hyperparameters of ANN which can be deployed on MCUs
as the computational requirements for the optimization of
hyperparameters and structure of ANN is much higher than
that available from a MCU.

2.1 Approaches for Microcontrollers

AutotinyML [7] proposes a framework, based on Bayesian
Optimization (BO), to optimize the hyperparameters of a
Convolutional Neural Network by dealing with black box
deployable constraints (memory occupation) extracted from
STM32Cube.AI tool. It is composed of two different
phases. In the first phase, a non-linear SVM classifier is
used to approximate the feasible region of the search space
associated to hyperparameters values most probably leading
to DNNs models deployable on MCU. In the second phase,
a BO is focused to the estimated feasible region with the
aim to optimize the loss function. Moreover, a probabilistic
regression model, specifically a Random Forest is used to
approximate the objective function by using the Lower
Confidence Bound. Results shown comparable accuracy
w.r.t handcrafted baseline with a remarkable reduction of
RAM, ROM and MACs.

Solutions Approach Target Device Constraints Dataset Acc.

%

GPU

hours

Tested Applications

HardCoRe-

NAS [1]

Differentiable

search space +

one shot

Edge-GPU/CPU Latency ImageNet 78.0 400 Image classificaiton

MSNet[4] Evolution

Search

100-320K

SRAM, (256KB-

1MB) Flash

Peak memory

usage

CIFAR-10 89.09 8 Image classification,

VWW

Co-Design
NAS[5]

RL (architecture
& quantization

space)

(0.5-3.5MB)
Flash AIoT/

Mobile embedded

Peak memory
usage & througput

CIFAR-10 82.93 NA Image Classification

E-DNAS[6] Gradient SoC
(ARM cortex-

A15)

Low Latency,
Memory

ImageNet 76.9 70 Image classification

AutotinyML [7] Bayesian

Optimization

MCU Memory User

Identification
from Walking

Activity

92.93 200 Human Activity

recognition

MCUNet[8] One shot +
Evolution

Search

MCU Memory (model
size + peak

memory usage),

Latency

ImageNet 70.7 300 Image classification,
Object detection,

VWW

uNAS[18] Aging
Evolution

MCU Model size, RAM
usage

MNIST 99.19 30 Image classification

Table 1: Overview of different resource constrained NAS approaches and their performances

MCUNet [8] Tiny Deep Learning on IoT Devices is a
framework of system-algorithm co-design that jointly
optimizes the neural architecture with TinyNAS and the
scheduling of the inference with TinyEngine in a same loop.
TinyEngine offloads redundant operations from runtime to
compile time and only generates the code that will be
executed by the TinyNAS which helps in reducing the
memory requirements of the inference and allowing more

memory for the model size. TinyNAS takes advantage of
the memory reduced by TinyEngine and finds a high
accuracy model compared to existing frameworks. It is a
combination of one-shot NAS giving a super network with
all subnetworks. This optimized space of subnetworks
undergoes evolution search to find the best architecture.
MCUNet achieved a record ImageNet accuracy of 70%+ on
a STM32H743 MCU with an SRAM usage of 490KB and

Flash usage of 1.9MB. Large datasets like ImageNet can be
used by this method. Supports different memory constraints.
Table 1 shows the overview of all the above-mentioned
approaches, target devices and their performances.
μNAS [18] is a combination of highly granular search space
which almost takes into consideration every aspect of a
network such as layer’s kernel size, stride, channels, pooling
size, fully connected layer’s output dimension, connection
between each layer, etc. Next the accurate resource use of
computation is considered where the peak memory usage,
model size, latency are the different aspects driving the loss
function. Aging evolution and Bayesian Optimization were
the two search algorithms compared. The former tends to
perform better than the latter. In addition to that model
compressing and pruning were done to reduce the memory
requirements of the microcontroller (MCU). The
experimental results showed an accuracy of 77.49% on
CIFAR-10 with a model size of 685KB, RAM usage of
909B and 41.2K MACs. This performance is better
compared to the previous solutions in such highly
constrained device like an MCU. It is still time expensive to
search for architectures. Improvements can be made to
reduce the search time by employing weight sharing to
reduce the cost of training each candidate network and by
not using the same search space throughout the entire search
process by using a parameterized space granularity which
can vary through the search space.

3 On Device Learning

This is an increasingly important topic in the ML
community since it tries to match the availability of
constrained memory and computational power. The
environment in which the inference model is deployed is
assumed constantly changing (being time varying) and this
may cause accuracy drop of ML inferences. This is known
as concept drift. Therefore, there is a need for a constant
update of the inference model using fresh data to learn from
them. On device learning makes shift the process from
offline updating the ML model to automatically update with
the real time data by ingesting new samples at run time so
that the device simultaneously learns and deploys the model
with constant adaptation. The accuracy needs to be
maintained at higher levels and it shall also reduce the
memory footprint to fit MCU hardware assets.
In the next section, this paper reviews and discusses about
the different approaches and strategies carried out to
implement On-device learning considering the memory
footprint be severely constrained.

3.1 On Device Learning on MCUs

On device learning enables resource constrained edge
devices to continuously adapt its knowledge, synthetized
into its model to new data and fitting the tight memory
constraints of such devices. Concept drift is one of the major
reasons for constant update of the network. This may result
in lower accuracies since the environment data change in
real time and if handled with no constant update of the
model. To overcome this, the idea of on device learning at

the edge helps since it scales, enable better personalization,
privacy and set the base for federated learning (FL) [9].
There are several approaches such as [10] introduces
intelligent Cyber-Physical Systems (CPSs) and it is able to
predict faults with autonomous behavior and self-adaptation
on the CPS itself. This method helps in energy efficiency,
reducing the bandwidth, autonomy can be achieved on
CPSs. [11] proposes a novel solution for online learning and
real time anomaly detection of pathological conditions using
a low power MCU from ECG signals. The proposed system
is based on Reservoir Computing followed by Principal
Component Analysis (PCA) and One-Class Support Vector
Machine (OC-SVM). This eliminates the need for storing
ECG signals for longer periods of time and avoids the time-
consuming off-line search of anomalies. [12] proposes a
Block based Binary Shallow Echo State Network (BBS-
ESN) which is a deeply quantized anomaly detector of oil
leaks that happen in the wind turbines with fixed and
minimal computational complexity. This network can be
deployed on an off-the shelf MCU and the power
consumption is greatly reduced. This is achieved by
binarization of images and one bit quantization of network’s
weights and activations. [13] proposes a novel Field
oriented Control algorithm by means of extreme learning to
modify the behavior and performance of electromechanical
systems which are highly nonlinear and needs to adapt itself
continuously over time. The Semi Binary Deep Echo State
Networks (SB-DESN) proposed achieves a good control
accuracy with less complexity. On top of that the paper also
proposes a novel complexity optimization which reduces the
memory footprint very low, such that it can be deployed
even on MCUs. Interesting results were obtained on
STM32H7 with an inference time of 20us. [14] proposes a
highly accurate, less complex online learning anomaly
detection Deep Echo State Network for water distribution
systems which adapts to the time varying data distribution
and can be deployed on an MCU. In this approach the
online learning can be made in two different ways: single
iteration and batch decomposition as per the memory
constraint of the device. Tiny-Transfer-Learning (TinyTL)
[15]proposes freezing of weights and learning the bias
modules which eliminates the need for storing the
intermediate activations. The results claim to have reduced
the memory with little loss in the accuracy compared to fine
tuning the full network. Compared to fine tuning only the
last layer, TinyTL performs with better accuracy with little
memory overhead. The memory can be further saved by
feature extraction adaptation without losing the accuracy.
Other’s state-of the art solutions for On-device learning on
MCUs exist.
TinyML with Online learning on MCUs (TinyOL) [16] is
implemented in C++ and can be attached to an arbitrary
existing network as an additional layer in MCUs. The last
additional layer learns from the new data and updates its
weights. As the network learns incrementally there is no
need for storing the historical data for training reducing the
memory requirements. New classes can be added by the last
layer and can be trained upon user request. This method is

like transfer learning in which fine tuning happens in the
last few layers. Only one data pair of the real time stream is
stored in the memory, thus reducing the memory footprint.
It is flexible to modify the layer structure on the fly. It has
been proven to be robust against concept drift. Yet this
approach is limited as the models are trained offline and do
not have support for training with 8-bit MCUs. The
experimental results on fine tuning a network as well as on
classification performed better with the stream of data on a
device with less than 256KB SRAM.
The other solution Tiny Machine Learning for Concept Drift
(TML-CD) [17] is mainly focused on overcoming the
accuracy drop due to concept drift with less memory
requirements. This approach is composed of a feature
extractor, Dimensionality Reduction operator, kNN
Classifier and an adaptation module. The adaptation module
adapts the training dataset for a kNN classifier with the new
data. The adaptation mechanism is carried out in three
different ways: active, passive and hybrid among which the
latter has been proved to perform better than the other two.
The hybrid adaptation is a combination of both passive and
active methods. It continuously adapts over time and at the
same time it discards the obsolete knowledge when a change
is detected in the stream of data due to concept drift and this
sets a bound-on memory footprint. This approach has been
tested with MCUs with RAM as low as 96Kb to 512KB and
the memory footprint is kept almost constant. It performs a
faster recovery when a change is detected. The experimental
results showed that the hybrid approach outperforms all the
other adaptation mechanisms and recovers faster when there
is concept drift. This approach can be further improved by
implying learning mechanisms for the feature extractor
block and by exploration of Sparse and Quantized solution
for the TinyML algorithms.

4 Conclusions

We discussed several approaches of Neural Architecture
Search for severely constrained devices to automate the
design process of accurate ML architectures with
consideration of the technological constrains imposed by the
devices and On-device learning to eliminate concept drift
and accuracy drop in edge devices. We further discussed on
how these approaches can be improved in the future for
better performing and robust solutions. Both these research
fields are important for the growth of TinyML, a worldwide
level community focused on the machine learning
ecosystem for mW (and below) power consumption
envelope devices, and deployment of Machine Learning on
edge devices.

References

[1] N. Nayman, Y. Aflalo, A. Noy and L. Zelnik-Manor,

"HardCoRe-NAS: Hard Constrained diffeRentiable Neural

Architecture Search," ICML, 2021.

[2] E. Jang, S. Gu, and B. Poole, ‘‘Categorical reparameterization

with Gumbel-Softmax,’’ in Proc. 5th Int. Conf. Learn.

Represent. (ICLR), 2017, pp. 1–12.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C.

Chen, "MobileNetV2: Inverted Residuals and Linear

Bottlenecks," CVPR, 2018, pp. 4510-4520

[4] H.-P. Cheng, T. Zhang, Y. Yang, F. Yan, H. Teague, Y. Chen

and H. H. Li, "MSNet: Structural Wired Neural Architecture

Search for Internet of Things," 2019 IEEE/CVF International

Conference on Computer Vision Workshop (ICCVW), pp.

2033-2036, 2019.

[5] Lu, Qing & Jiang, Weiwen & Xu, Xiaowei & Shi, Yiyu &

Hu, Jingtong. (2019). On Neural Architecture Search for

Resource-Constrained Hardware Platforms.

[6] J. G. López, A. Agudo and F. Moreno-Noguer, "E-DNAS:

Differentiable Neural Architecture Search for Embedded

Systems," 2020 25th International Conference on Pattern

Recognition (ICPR), pp. 4704-4711, 2021.

[7] R. Perego, A. Candelieri, F. Archetti and D. Pau, "Tuning

Deep Neural Network’s Hyperparameters Constrained to

Deployability on Tiny Systems," ICANN, 2020.

[8] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan and S. Han,

"MCUNet: Tiny Deep Learning on IoT Devices," NeurIPS

2020, Vancouver, Canada.

[9] Wikipedia contributors, "Federated learning — Wikipedia,"

2022.

[10] D. Cogliati, M. Falchetto, D. Pau, M. Roveri and G. Viscardi,

"Intelligent Cyber-Physical Systems for Industry 4.0," 2018

First International Conference on Artificial Intelligence for

Industries (AI4I), pp. 19-22, 2018.

[11] N. Abdennadher, D. Pau and A. Bruna, "Fixed complexity

tiny reservoir heterogeneous network for on-line ECG

learning of anomalies," 2021 IEEE 10th Global Conference

on Consumer Electronics (GCCE), pp. 233-237, 2021.

[12] M. Cardoni, D. P. Pau, L. Falaschetti, C. Turchetti and M.

Lattuada, "Online Learning of Oil Leak Anomalies in Wind

Turbines with Block-Based Binary Reservoir," Electronics,

2021.

[13] N. Federici, D. Pau, N. Adami and S. Benini, "Tiny Reservoir

Computing for Extreme Learning of Motor Control," 2021

International Joint Conference on Neural Networks (IJCNN),

pp. 1-8, 2021.

[14] D. Pau, A. Khiari and D. Denaro, "Online learning on tiny

micro-controllers for anomaly detection in water distribution

systems", IEEE ICCE Berlin 2021.

[15] H. Cai, C. Gan, L. Zhu and S. Han, "TinyTL: Reduce

Activations, Not Trainable Parameters for Efficient On-

Device Learning," NeurIPS 2020.

[16] H. Ren, D. Anicic and T. A. Runkler, "TinyOL: TinyML with

Online-Learning on Microcontrollers," 2021 International

Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2021.

[17] S. Disabato and M. Roveri, "Tiny Machine Learning for

Concept Drift," arXiv:2107.14759, 2021.

[18] E. Liberis, L. Dudziak and N. D. Lane, "μNAS: Constrained

Neural Architecture Search for Microcontrollers,"

Proceedings of the 1st Workshop on Machine Learning and

Systems, 2021.

